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Critical dynamics arise during structured
information presentation within embodied
in vitro neuronal networks

Forough Habibollahi1,2,3,5, Brett J. Kagan 1,5 , Anthony N. Burkitt 2 &
Chris French 3,4

Understanding how brains process information is an incredibly difficult task.
Amongst the metrics characterising information processing in the brain,
observations of dynamic near-critical states have generated significant inter-
est. However, theoretical and experimental limitations associated with human
and animal models have precluded a definite answer about when and why
neural criticality arises with links from attention, to cognition, and even to
consciousness. To explore this topic, we used an in vitro neural network of
cortical neurons that was trained to play a simplified game of ‘Pong’ to
demonstrate Synthetic Biological Intelligence (SBI). We demonstrate that cri-
tical dynamics emerge when neural networks receive task-related structured
sensory input, reorganizing the system to a near-critical state. Additionally,
better task performance correlated with proximity to critical dynamics.
However, criticality alone is insufficient for a neuronal network to demonstrate
learning in the absence of additional information regarding the consequences
of previous actions. These findings offer compelling support that neural cri-
ticality arises as a base feature of incoming structured information processing
without the need for higher order cognition.

How do our brains process information? It has been hypothesised for
some decades that neural systemsoperate in or near a “critical state”1–6

with well-defined dynamical properties characterised by inter alia,
stability of neuronal activity, optimised information storage, and
information transmission4,7. The presence of “neuronal avalanches”
(cascades of propagating activity governed by power laws) as one
hallmark of criticality is widely reported in the spontaneous activity of
in vivo cortical networks8–13. While there is some evidence of neuronal
avalanches in vitro in local field potentials (LFPs) of spontaneous
activity in slice cultures5,14, cultured mouse neurons15,16, and neurons
differentiated from cultured human stem cells17, the characteristics
and extent is still unclear. Moreover, the specific role of neural criti-
cality, along with why and when it occurs, remains a matter of sig-
nificant controversy18,19.

Early work identified a link between the balance of excitatory and
inhibitory inputs and the critical phase transition20. Anticipating this
critical transition and the proximity of a network to criticality informs
network robustness and can even approximate risk factors of network
failures such as epileptic seizures21. Moreover, cortical networks
express a dynamic equilibrium regime associated with criticality,
including: 1) the absenceof runawaygains, inwhichbalanced activity is
maintained in the neuronal networks such that the neuronal activity
does not saturate or become quiescent3; 2) a wide coverage in both
spatial (mm to cm) and temporal (ms to min, h, etc.) scales during
information encoding and transmission3; 3) wide dynamical range22,23;
and 4) maximized information transmission in terms of mutual
information24,25 and information storage and processing capabilities26,
such as elevated sensitivity and susceptibility to input. While in the
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context of population dynamics these criteria have been postulated to
be a homeostatic set point for biological neural networks (BNNs),
questions about the utility remain27–30.

Previous modelling of neuronal avalanches and of cortical slice
cultures suggest that information is more optimally transmitted and
stored as a result of neuronal networks being tuned near criticality5,31.
Therefore, criticality has been proposed as a set-point for the self-
organization of cortical networks32. Nevertheless, some theoretical
works have proposed that criticality only benefits the performance in
complex cognitive tasks, while resting state conditions are less likely to
benefit from these network dynamics33. Further support for this view
identifies that healthy adults undertaking working memory and cog-
nitive tasks have reported power-law scaling of response time
fluctuations34,35. Further, some forms of neurological dysfunction have
been ascribed to impairment of critical dynamics36–38. While indicative,
it has also been recognised that power laws are insufficient to infer
criticality, since they can emerge from noise39. Further findings iden-
tifying linkages between criticality and stimulus discrimination,
attention, language acquisition, fluid intelligence, and even conscious
(awake) behaviour further complicate interpretations40–46.

Consequently, there is still a lack of experimental evidence
demonstrating whether criticality is a general property of biological
neuronal networks, possibly generated by homeostatic mechanisms,
or whether it is related to the brain’s response to mere informational
load, or a more complex association with cognition. A question that
still remains to be answered is whether cortical neuronal networks
display a near-critical state during spontaneous activity or whether
they only display near-critical states with structured information
input - which for in vivo processing would typically occur when
undertaking cognitive processing. An additional concern here is that
functionally defined neural networks are rarely isolated from themany
other connected networks of the intact brain, making it difficult to
discern truly local critical functional dynamics as opposed to patterns
derived from other regions47.

To determine how criticality may arise without these overlapping
compensatory mechanisms requires simplified models that are able to
be presented and respond to structured information. To address this
requirement and better evaluate these questions on the role of neural
criticality, data was analysed from an in vitro neural network of cortical
neurons which was trained to play the game ‘Pong’. We utilized Dish-
Brain, a novel systemshown todisplay goal-directed activity changes by
harnessing the inherent adaptive computation of neurons to showwhat
has been termed Synthetic Biological Intelligence (SBI)48. As such, this
work also serves as a useful demonstration of the utility of these closed-
loop SBI systems over spontaneous activity alone. We hypothesise that
near-critical network behavior emerges when neural networks receive
structured sensory input and that this systemwould develop a network
structure closer to critical states with successful task acquisition.

Results
Cortical cells, either differentiated from human induced pluripotent
stem cells (hiPSC) or derived fromE15mouse embryos, were subjected
to the Gameplay and Rest conditions in the DishBrain system as pre-
viously described in ref. 48. Hit-to-miss ratio and distance from the
critical state were compared in different experimental conditions - see
Supplementary Information section 1.1–1.4 and Supplementary Fig. S1.
The measurements were carried out in both the conditions of (i)
Gameplay, where cells adjusted paddle position through activity
changes and received information about the position of the ball and
the closed-loop response to their control of it, and (ii) Rest, where
neuronal activity adjusted the paddle position, but received no input,
in order to give a matched control. For more details, see Supplemen-
tary Information section 1.4–1.5 and Supplementary Fig. S3.

Neuronal avalanches were identified in network recordings. The
scale-free dynamics of detected neuronal avalanches, as well as the

Deviation fromCriticality Coefficient (DCC), Branching Ratio (BR), and
Shape Collapse error (SC error) were evaluated to identify whether the
recordings were tuned near criticality. Figure 1a–f provide a visual
overview of the framework utilized in this study to investigate how far
the dynamics of in vitro networks of cortical neurons are from criti-
cality and whether this distance can accurately distinguish between
task-present and task-absent states being processed by the neurons.
Table 1 summarises these metrics of criticality and their formulations
(see Section 'Data analysis' and Supplementary Figures S6, S7 and
refs. 3, 49, 50). At criticality, BR of the network is tuned near 1.0 while
DCC and SC error diminish to 0.

Cultured cortical networks show markers of criticality when
engaged in a task but not when resting
Data from 14 different cultures integrated on HD-MEAs during 308
experimental (192 Gameplay; 116 Rest) sessions were recorded and
discretized into 50ms bins. For full details about the number of cul-
tures and number of experiments performed on each culture, please
see Supplementary Information section 1.6 and Supplementary Fig. S5.
The sum of activities from all the recording channels in each time bin
denotes the network activity. The network state was then evaluated
using each of the described measures of criticality.

Figure 2 illustrates the fitted PDF functions to avalanche size and
duration and the associated pair of exponents (τ and α); the exponent
is the slope of the line in a log-log plot. The associated DCCs extracted
from the network are also represented. Data from two sample cultures
are displayed to illustrate the comparison between the network’s
dynamical state during Rest and Gameplay. Fitted power law distribu-
tions, DCC values, and the span of distributions in both size and
duration domains are visualized in a Rest session (e.g., Session 1)
against a Gameplay session (e.g. Session 4.)

Additionally, BR and SC error were also extracted for all cultures
in recording sessions 0 to 4.

Figure 3a–c illustrate a general comparison between the critical
and non-critical dynamics in terms of each of the introduced criticality
metrics, DCC (3a), BR (3b), and SC error (3c). An Alexander-Govern
approximation test was run to investigate the significance of the dif-
ferences between the two groups for each extracted metric.
Figure 3d–f illustrate the distribution of the criticality metrics in dif-
ferent recording sessions of the experiments. Comparison of the Rest
(colored in teal) and Gameplay (colored in pink) sessions indicates the
shift of cultured cortical network dynamics towards criticality during
the task-present sessions. TheGameplay “Hit toMiss Ratio” (H/M ratio)
- the number of accurate “hits” to the number of “missed” balls - was
also found to be significantly higher than during Rest. A summary of
the statistical comparisons including the comparison of H/M ratio is
given in Fig. 3g.

These results indicate the shift towards self-organized criticality
of the neural cultures in these experiments when exposed to external
structured information such as the game environment of ‘Pong’. In
contrast, cultured cortical networks deviated from the critical state
during Rest sessions when the paddle was solely affected by the neu-
rons’ spontaneous activities. When the cells were not presented any
external information about the status of the ball or the game (such as
in Rest conditions), the network parameters indicated a sub-critical
system. These results suggest that during task-present conditions
(here accompaniedby learning,which is reflected in the improvedH/M
ratio of experimental cultures), the cultured cortical network tunes
itself near criticality.

Notably, deviation from criticality was also measured in time-
shuffled data acquired from the Gameplay sessions. These data pre-
served the spatial correlations but randomized the temporal structure
and obtained a significantly higherDCC value compared to the original
data, indicating a larger deviation from criticality compared to the
original data (DCC for time shuffled and original recordings:
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Fig. 1 | Schematic overview of study. a) Showing cortical cells harvested from
embryonic rodents. b) & c) The recorded population activity from these cortical
cells is then binned to 50ms bins during both Gameplay and Rest sessions. The
neuronal avalanches are cascades of network activity that surpass a certain activity
threshold for a certain duration of time, which are then extracted by bin. d) & e)
Avalanches are utilized to examine the criticality metrics in the neuronal network’s
activity patterns to identify the working regime of each recording in terms of being
sub-, super-, or near-critical. f) The same measures of criticality are used to cluster

the recordings between twogroupsofGameplay andRest. g) &h) Illustration of the
experimental pipeline in which cultured cortical networks are recorded during
Gameplay and Rest states. The recorded neuronal activities are then employed to
extract the 3 metrics of criticality (namely Branching Ratio (BR), Deviation from
Criticality Coefficient (DCC), and Shape Collapse error (SC error)) which are found
to move towards the critical point during Gameplay g) andmove further from that
point during Rest h).

Table 1 | Criticality parameters and metrics with details of their formulation

Notation Definition Formulation

α Calculated exponent for the truncated power law distribution fitted on
avalanche duration, D (time).

fðDÞ= D�αPDmax
Dmin

D�α
, where maximum likelihood estimation was used to fit a

truncated power law to the avalanche duration distribution (f(D)).

τ Calculated exponent for the truncated power law distribution fitted on
avalanche size, S (number of spikes).

fðSÞ= S�τPSmax
Smin

S�τ
, where maximum likelihood estimation was used to fit a

truncated power law to the avalanche size distribution (f(S)).

βpred The third hidden power law exponent in critical systems which represents
the relationship between size and duration exponents.

βpred =
ðα�1Þ
ðτ�1Þ.

DCC Deviation from criticality coefficient. DCC = ∣βpred −βfit∣, where hSi / Dβfit .

BR Branching ratio is the ratio of the number of neurons spiking at time step
t + 1 to the number of active neurons at time step t.

〈N(t + 1)∣N(t)〉 = BR ⋅N(t) + h, whereN(t) is the number of active neurons at time
t and h is the external drive.

SC error Avalanche profiles of all sizes are copies of each other as they unfold from
different scales, and they all collapse to the same universal shape. A col-
lection of scaling functions (F(. )) are extracted for various D durations. The
error for this process is described as: varðFÞ

ðmaxðFÞ�minðFÞÞ2.

sðt,DÞ / DγF t
D

� �
, where hSiðDÞ= R D

0 sðt,DÞdt,F t
D

� �
is a universal function for all

avalanches, γ = β − 1, and SC error is ∣β − βpred∣ when varðFÞ
ðmaxðFÞ�minðFÞÞ2 is

minimised.
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0.627 ±0.087 and 0.296 ±0.015 respectively, p <0.0005, Alexander-
Govern approximation test). Specifically, we sought further control
data by analysing time-shuffled data to detect the sensitivity to the
ensemble activity’s temporal structure. This control is important since
the comparison can then eliminate the potential role of temporal
random effects in detecting the critical dynamics.

Furthermore, to determine whether the identified criticality
metrics correlated with game performance, exploratory uncorrected
Pearson’s correlations were computed for criticality metrics and H/M
ratio for all recording sessions (see Fig. 3h–j). While a significant
negative correlation was found between DCC and H/M ratio (r = −0.13,
p <0.05, Pearson Correlation test) as well as SC error and H/M ratio
(r = −0.17, p <0.005, Pearson Correlation test), a strong positive
association was observed between BR and culture performance
represented by H/M ratio (r =0.24, p < 0.00005, Pearson Correlation
test). This indicates that network dynamics closer to criticality may be
related to better performance.

Culture Gameplay vs Rest status is predicted by criticality
metrics and H/M ratio
Binary classification of the data was performed to predict group
membership of each recording session and assign it to either the
Rest or Gameplay classes. Three different classification algorithms
were utilized: Logistic Regression, Support Vector Machines
(SVM), and Random Forests. Table 2 represents the mean predic-
tion accuracy for various classification methods as well as different
approaches in assigning feature vectors to the data points.
4-Metrics refers to the case where a 4 dimensional vector of all the
4 metrics represented in Fig. 3g were used to represent each data
point. 3-Criticality metrics indicates a case where only 3 criticality
metrics are used to form the feature vectors. The conditions where
each metric is separately used to represent the data points is also
included. The results demonstrate that the highest accuracy of

prediction can be achieved using all 4 criticality metrics accom-
panied by the culture’s H/M ratio. Nevertheless, it was also found
that merely employing the criticality measures is sufficient for an
accurate prediction (up to 92.41%) of the culture’s status in terms
of it being task-present or task-absent (i.e., the default resting
state). These findings suggest that knowledge about a neuronal
network’s distance from criticality may be adequate for distin-
guishing between task-present and task-absent states and whether
the input information is being optimally processed. Data repre-
sentations were visualized using the obtained feature vectors.
Since the 4-Metrics representation proved to be the most effective
representation given the results in Table 2, we considered this case
for the visualization task. A standard t-SNE algorithm51 visualized
the data representations as per Fig. 4a. A 2-dimensional visualiza-
tion of the sessions is obtained with each recording session
represented as a colored dot. The pairwise dissimilarities between
each data point (i.e. each recording session) and their corre-
sponding projections in the resulting 2-dimensional mapping were
then calculated. The Kullback-Leibler divergence as a measure of
this dissimilarity between distributions was 0.373, which indicates
an accurate network representation.

Motor and sensory subpopulations inherit the criticality char-
acteristics of the entire neuronal ensemble
In theDishBrain systemconfiguration, a specific frequency and voltage
are applied to key electrodes in the predefined sensory areas, as
described in ref. 48. Then, different predefined motor region config-
urations are examined to select the configuration that maximises
performance. The paddle moves in a corresponding direction based
on the region with the higher activity (For more details, please see
Supplementary Fig. S2).

We assessed the activity dynamics of the overlaid neuronal sub-
populations on each of the predefined region of electrodes.

Fig. 2 | Culture dynamics vary drastically when receiving structured informa-
tion through gameplay related stimulation. Avalanche size and duration PDF
plots and the calculated DCC values for 2 representative sample cortical cultures at
a) Rest (i.e. Session 1) and b) Gameplay (i.e. Session 4) of the same experiment and

the corresponding α and τ exponents. DCC is given by ∥βpred − βfit∥; for details, see
Table 1 and section Exponent relation and Deviation from Critically coeffi-
cient (DCC).
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Fig. 3 | Comparison between critical and non-critical dynamics. a) Illustration of
the course of the expected change in theDCCmeasurewhen transitioning between
near-critical and non-critical regimes. b) Comparison of the shape collapse error
while scaling avalanche shapes in 2 sample recording sessions. Scaled avalanches
across a range of durations show little error around the polynomial fit in the upper
row (indicative of a near-critical regime) while this error increases significantly in
the data represented at the bottom row (indicative of a non-critical regime). c)
Effect of branching ratio (BR) on activity propagation through a network over time.
In critical regimes, BR= 1.0 and, on average, activity neither saturates nor decays
across time. d–f) DCC, BR, and SC error extracted for all the recordings and com-
pared between Gameplay and Rest. The illustrated trend in all measures supports
the conclusion of the system tuning near criticality during Gameplay. The Game-
play recordings display DCC and SC error values closer to 0 and branching ratios
closer to 1; features which are missing in the Rest recordings. Box plots show
interquartile range,with barsdemonstrating 1.5X interquartile range, the linemarks
the median and the black triangle marks the mean. Error bands, 1 SE. *** indicates

p < 5 × 10−4 and **** indicates p < 5 × 10−5. g) Summary of the key characteristics of a
critical system compared between all Rest and Gameplay sessions as well as the
corresponding performance level in terms of the observed H/M ratio. Error bars,
SEM. **** indicatesp < 5 × 10−5. The sample sizes of the box andbarplots are equal to
the number of independent Gameplay recordings (n = 192) and Rest recordings
(n = 116). Alexander-Govern approximation test with p = 7.836e −06,
p = 5.667e − 13, p = 2.460e −07, and p = 3.356e −06 for DCC, BR, SC error, and H/M
ratio in Gameplay vs Rest. h) A weakly significant negative correlation was found
between DCC and the neuronal culture performance in terms of H/M ratio
(r = −0.13, p <0.05, Pearson Correlation test). i) A strongly significant positive
associationwas observedbetweenBRandH/M ratio (r =0.24,p <0.00005, Pearson
Correlation test). j) A strongly significant negative correlation was found between
SC error and H/M ratio (r = −0.17, p <0.005, Pearson Correlation test). Shades
represent the 95% confidence intervals. Source data are provided as a Source
Data file.
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Consequently, the introduced criticality metrics were measured from
the recorded activities of each of these subpopulations separately.
Figure 4b–d demonstrates that these subpopulations also exhibit
similar features of a near-critical system when exposed to the Game-
play setting. Yet both motor and sensory neuronal populations were
identified to be statistically significantly closer to criticality compared
to Rest session recordings from the same neuronal subpopulations
(p < 10−3 for DCC in the Motor subpopulation and p < 10−5 for all other
comparisons, Alexander-Govern approximation test). Supplementary
Table S1 presents full details on all multivariate statistical tests per-
formed in relation to these figures.

Feedback is required for improved game performance in a cri-
tical system
Biological neuronal networks typically require feedback for
learning to occur - i.e., a closed-loop between action and con-
sequence. In a closed-loop system, feedback is provided on the
causal effects of the neuronal culture’s behavior48. Three different
feedback conditions were employed in this study. Condition 1
(Stimulus), is where predictable and unpredictable stimuli are

administered when the cultures behaved desirably or not,
respectively (results reported previously). Condition 2 (Silent),
involves the above stimulus feedback being replaced with a
matching time period where all stimulation was withheld. Condi-
tion 3 (No-feedback), involves a more drastic change to the
gameplay environment, where the ability for the ball to be missed
was removed, so when the paddle failed to intercept the ball, the
ball bounced instead of triggering a reset, and the game continued
uninterrupted48 (see Supplementary Information section 1.4 and
Supplementary Fig. S4). Performance of the cultures in terms of
their H/M ratio, as well as their criticality characteristics, were
measured under all three feedback conditions and then compared
to the Rest sessions. Table 3 represents the results (Mean ± SE) for
14, 15, and 12 different cultures under Stimulus, Silent, and No-
feedback conditions respectively. These additional experiments
were done beyond the recordings used in the previous analysis
(For full details about the number of cultures and number of
experiments performed on each culture in each feedback type,
please see Supplementary Information section 1.6 and Supple-
mentary Fig. S5). Overall 113, 119, and 95 sessions were recorded

Table 2 | Comparison of the mean prediction accuracy for different binary classifiers on all the recorded sessions

Classifiers Feature Vectors

4-Metrics 3-Criticality metrics DCC BR SC error H/M ratio

Logistic Regression 0.8734 0.7215 0.7215 0.7215 0.7215 0.8861

SVM 0.962 0.7932 0.7296 0.7342 0.7253 0.9241

Random Forest 0.9821 0.9241 0.8043 0.8261 0.8043 0.9565

Fig. 4 | Critical dynamics are observed in subpopulations of neurons during
Gameplay but not Rest and in different feedback conditions. a) Visualization of
the extracted representation for each data point using the t-SNE algorithm in a
2-dimensional space (i.e., dimensions t-SNE1 and t-SNE2). The two Rest and Game-
play classes are illustrated with different colors. b) DCC, c) BR, and d) SC error
variations between Rest and Gameplay sessions in separate motor and sensory
regions of the cultures. The illustrated trend in all three measures on the sub-
populations is in line with the previous conclusion about the entire population. A
similar pattern in these results also states that during Gameplay the neuronal
ensembles move near criticality while in Rest, they are further from a critical state.
***p < 10−3, ****p < 10−5. Box plots show interquartile range, with bars demonstrating

1.5X interquartile range, the linemarks themedian and the black trianglemarks the
mean. Error bands, 1 SE. The sample sizes of the box and bar plots are equal to the
number of independent Gameplay recordings (n = 192) and Rest recordings
(n = 116). Alexander-Govern approximation test with p = 8.172e − 4, p = 8.839e − 6,
and p = 7.139e − 6 for DCC, BR, and SC error in themotor region and p = 5.627e − 12,
p = 4.637e − 7, and p = 1.442e − 6 for DCC, BR, and SC error in the sensory region in
Gameplay vs Rest. e) Comparing the average DCC measure calculated in different
feedback conditions with the Rest sessions. ***p < 5 × 10−3, ****p < 10−10. Error bars,
SEM. The sample sizes of the bar plots are the number of independent recordings
during Rest or different feedback conditions, that is n = [209, 113, 119, 95] for Rest,
Stimulus, Silent, and No-feedback. Source data are provided as a Source Data file.
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under the Stimulus, Silent, and No-feedback conditions respec-
tively, and were compared to 209 Rest sessions obtained from the
total of 41 cultures under experiment. The reported p−values
represent the significance of the difference between the obtained
measures in each feedback condition and the Rest cultures. It is
very interesting to observe that the Silent condition shows sig-
nificant performance in the game (H/M ratio) as well as showing
dynamical features that are indicative of a near-critical system. The
deviation from criticality (DCC) is significantly lower in the Silent
condition compared to Stimulus or No-feedback (p < 0.005,
Alexander-Govern approximation test) conditions (see Fig. 4e.
This difference was not significant when comparing Stimulus and
No-feedback conditions. While comparing the gameplay char-
acteristics of the cultures (H/M ratio), the Stimulus and Silent
conditions both significantly outperform the No-feedback condi-
tions (p < 0.0005 and p < 0.005, Alexander-Govern approximation
test). While the No-feedback system also represents features
characterizing near-critical dynamics (although to a lesser extent
compared to the other two closed-loop systems), the game per-
formance significantly deteriorates in this case (no significant
outperformance compared to the Rest state, p = 0.085, Alexander-
Govern approximation test). This demonstrates that fine-tuning

near criticality may be necessary for optimal information proces-
sing when facing an increased load. Nonetheless, criticality may
not be sufficient for a neuronal network to achieve its learning and
memory goals in the absence of additional information regarding
the consequences of previous actions, i.e., feedback. All details for
post-hoc follow-up tests in relation to this figure are presented in
Supplementary Table S2.

Critical dynamics show nuanced differences based on bursting
patterns of activity
Prior studies have demonstrated that dissociated cortical cell cultures
display a diverse range of activity patterns52. The bursting patterns
observed in these cultures exhibit developmental changes and sig-
nificant variability across different cultures. These findings highlight
the value of utilizing multiple preparations in any investigation invol-
ving neuronal cultures. We utilized the burst (or avalanche) classifi-
cation methods and metrics introduced by52 to extract quantitative
details from the detected avalanches during Rest recordings. Our aim
was to distinguish between cultures based on their bursting patterns
and investigate whether any of the criticality metrics examined in our
researchexhibited significant differencesbetween thedifferent classes
of cultures. The following criteria were extracted from the

Table 3 | Comparison of the 4 extracted criticality measures as well as the H/M ratio for the Rest and Gameplay groups

Rest Stimulus Silent No-feedback

DCC 2.010 ±0.212 0.311 ± 0.020 (p < 10−13) 0.217 ± 0.017 (p < 10−14) 0.414 ± 0.082 (p < 10−11)

BR 0.914 ± 0.008 0.956 ±0.003 (p < 10−4) 0.970 ±0.002 (p < 10−4) 0.960 ±0.004 (p < 10−4)

SC error 0.970 ±0.033 0.591 ± 0.036 (p < 10−10) 0.600 ±0.039 (p < 10−10) 0.621 ± 0.040 (p < 10−7)

H/M ratio 0.749 ±0.018 0.898 ±0.021 (p < 10−4) 0.868 ±0.024 (p < 10−4) 0.787 ± 0.012 (p = 0.085)

The p-value of an Alexander-Govern approximation test is reported for each measure in comparison of each feedback condition with Rest sessions. Source data are provided as a Source Data file.

Fig. 5 | Comparison of criticality metrics between different bursting patterns
for either Gameplay or Rest. a–c) DCC, BR, and SC error of all Rest and Gameplay
sessions for different size distributions of avalanches observed during Rest
recordings of each culture. d–f) DCC, BR, and SC error of all Rest and Gameplay
sessions for different types of burst rates observed during Rest recordings of each
culture. Alexander-Govern approximation test was utilized. ***p < 5 × 10−3 with a)
p = 8.335e − 4 during Rest, b) p = 4.705e − 3 during Gameplay, c) p = 1.064e − 4, and

p = 6.423e − 8 during Gameplay and Rest respectively, e) p = 4.815e − 3 during
Gameplay, and f) p = 9.514e − 5, and p = 1.068e − 5 during Gameplay and Rest
respectively. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and the black triangle marks the
mean. Error bands, 1 SE. The sample sizes of the box plots are equal to the number
of independentGameplay recordings (n = 192) andRest recordings (n = 116). Source
data are provided as a Source Data file.
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spontaneous activity of the cultures during the Rest recordings: 1) Size
distribution of avalanches, 2) Burst (avalanche) rates, and 3) Superb-
ursts. These measures were employed as classifiers to identify the
bursting pattern of each culture. For definitions of these criteria and
their quantification, see Section 'Burst pattern analysis' and ref. 52.

Based on our measurements, we observed that none of the
recordings in our dataset exhibited superbursts during the Rest state.
However, there were notable differences in terms of the size dis-
tribution and burst rates among the recordings. Specifically, two types
of size distributions, ‘bimodal’ and ‘irregular’, were identified across
various recordings (no ‘fixed’ distributions were found). Additionally,
the burst rates were classified into two groups, ‘highly variable’ and
‘not variable’. Figure 5 illustrates the DCC, BR, and SC error extracted
for all the recordings during Gameplay and Rest, and compares them
between different classes of size distribution or burst rates. Supple-
mentaryTable S1 presents full details on allmultivariate statistical tests
performed in relation to this figure.

During the Gameplay sessions, several metrics did not exhibit a
statistically significant difference between the classes. However, the BR
and SC error metrics showed indications of being in a closer proximity
to a critical state, as evidenced by higher BRs and lower SC errors, when
avalanches had an ‘irregular’ size distribution and ‘not variable’ burst
rates. In a near-critical system, we anticipate observing avalanches of
various sizes that span multiple orders of magnitude. The presence of
an ‘irregular’ size distribution during Rest is suggestive of a system in
which bursts of varying sizes occur, and is consistentwith thehallmarks
of a system that can achieve near critical dynamics. Therefore, this
observation could be expected.Moreover, thefindings suggest that the
‘not variable’ burst rates in the spontaneous activity of the cultures
were also indicators of cultures that achieved more proximate
dynamics to criticality.

Based on analysis of the Rest state recordings, the ‘irregular’ size
distribution exhibited indications of being in closer proximity to cri-
ticality, as evidenced by lower DCC and SC error. This data provides a
nuanced perspective for how spontaneous electrophysiological char-
acteristicsmay influence the expressionof criticality dynamics in vitro.
The difference in criticality at Rest for cultures with ‘irregular’ and ‘not
variable’ firing patterns is suggestive that these cultures may have
more complex interconnectedness that could facilitate critical
dynamics even at Rest. Yet, when embodied in a structured informa-
tion landscape through gameplay, the differences between these cul-
tures are greatly ameliorated, potentially because more complex
informational flows are available to the culture through the simulated
environment. Nevertheless, these results should be considered as
preliminary evidence at best, as the lack of concordance between all
metrics for criticality prevents any robust conclusions.

Discussion
When considering how neural systems process information, near-
critical dynamics in the brain remain a fascinating phenomenon.
The primary hypothesis that near-critical network behaviour
emerges when neural networks receive structured sensory input
was strongly supported. Criticality was readily observable for in
vitro neuronal cultures when embodied in a virtual environment48

through structured stimulation. As evidenced through multiple
features expected of a near-critical system, we found that cultured
networks of cortical neurons self-organized to display these key
markers when receiving structured information, but not when
unstimulated. Through this it was robustly observed that in vitro
cortical neurons exhibited markers of criticality when actively
engaged in a task and receiving feedback contingent on neuronal
activity modulating the simulated world.

Comparing the data from this study with previous literature
investigating neural criticality in vitro, some key observations can
be made. Previously most studies finding evidence of criticality in

vitro conclude that criticality would arise in some cultures after
maturation5,15–17. Consistent with this, we did discover closer to
critical dynamics on somemetrics in cultures with certain bursting
patterns - specifically those that exhibited more variable and
irregular activity. Whether this is occurring in cultures that
showcasemore complex networks is unclear and beyond the scope
of this single study, yet forms an important direction for future
research. Nevertheless, here we found that in vitro neuronal net-
works show particularly robust markers of criticality only when
presented with structured information through electrical stimu-
lation. In contrast, while in the default resting state of in vitro
neuronal networks, i.e., not embodied within a game environment,
despite spontaneous activity exhibiting neuronal avalanches, cul-
tures no longer display dynamics that were as close to criticality
across all metrics. This finding that even though evidence of ava-
lanches were identified within spontaneous activity, they did not
show consistency across more robust measures of criticality, may
explain the difference between this work and the previously
described in vitro measures of criticality that focused pre-
dominately on power laws. While relying on identifying power-law
scaling in temporal and partial domains is common historically34,35,
power laws have more recently been shown to also have the
potential to emerge from noise39. Better practice is to have power
laws accompanied by independent stochastic surrogates, such as
disconnected nodes in a complex system39. Here we co-analysed
the described three established markers of criticality on spiking
data generated in this system39,49. We observed an exceptionally
high degree of qualitative concordance between these different
measures, adding confidence to the internal validity of the results.
Likewise, we find the extent of this difference based on markers of
criticality alone was stark enough to predict whether a given cul-
ture was actively engaged in gameplay or resting with a 92.41%
accuracy. When performance data was included this accuracy
increased to 98.21%, further supporting the dramatic difference
between resting and active cultures. The additional finding that
these markers of criticality were persistent across sub-populations
defined by their external relationship to the game-world for the
neuronal cultures, suggests a network-wide coordination of
activity. This does not mean that no critical dynamics were present
in previous work5,15–17, rather it may suggest that there are differ-
ences in the extent of critical dynamics under different conditions,
where criticality is best conceptualised as a spectrum. Therefore, it
can be coherently accepted that as the neural cell cultures
matured, they possibly underwent a transition towards critical
dynamics without external stimulation. Furthermore, by placing
the cultures in a closed-loop structured information environment,
they may have moved even closer to criticality. Given the impor-
tance of the excitatory-inhibitory balance in maintaining critical
dynamics20,53 coupled with tendency for inhibitory pathways to
become more prominent over time54, such a finding would indeed
be expected and forms an interesting direction for future research.

Furthermore, the finding that significantly closer to critical
dynamics are observed in vitro when cortical networks are integrated
with in silico computing via HD-MEA to experimentally explore the
notion of criticality under task-present compared to task-absent states
can also be applied to a in vivo context. It has been proposed that
certain features of learning, including information capacity and
transmission, are optimized at criticality55. Indeed, many studies have
identified in vivo that cortical networks typically function near a cri-
tical point4,5, the extent of which shows key correlations with
performance3. Taken in concert with past research identifying power-
law-like behaviour in brain activity of humans undergoing cognitive
tasks, this is indicative of a network-wide fundamental computation
underlying information processing which may be ongoing in these
cultures only when actively engaged in a task or otherwise presented
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structured information34,35. For example, the importance of critical
state dynamics in language acquisition has been highlighted42,43.
Moreover, resting-state fMRI data of neurotypical adults with varying
IQs has found a connection between high fluid intelligence and close
proximity to a critical state in a spin-glass model40. In addition, con-
scious states of mind have been linked to near-critical slow cortical
electrodynamics, suggesting that the disruptions in information pro-
cessing during unconscious states are due to the transition of low-
frequency cortical electric oscillations away from the critical point41. In
contrast, several studies demonstratemore ambiguous results around
the relationship between electrical brain response to increased cog-
nitive load56–59. Moreover, while numerous studies have observed cri-
tical dynamics from spontaneous activity in vivo8–13, the neural regions
measured are not isolated from external input, including input from
other unmeasured neural regions, even when anesthetized. This
makes it infeasible to determine whether in vivo neural systems are
spontaneously tuned towards critical dynamics, or if this arises
through a dynamic interplay between systems where critical points
can generalize to critical regions60. Moreover, in the majority of these
previous studies, the observation of power laws was regarded as the
primary indicator of criticality. As noted above, the criticisms of this
approach49,61,62 makes it infeasible to robustly establish that these in
vivo neural systems are certainly operating at criticality, or to what
extent criticality is displayed relative to other states if so.

Our results can also be compared to the increasing evidence
linking near-critical dynamics in the brain with cognitive-like
behaviour63–65. The secondary part of our hypothesis was that the
neural cell activity would develop a network structure closer to a
critical state with successful task acquisition. Although there was
some support for this hypothesis, the data suggests a more fun-
damental role of criticality, where criticality may be considered a
necessary but not sufficient conditions for dynamic cognitive-like
behaviours - such as successful task acquisition to arise. While the
results did find consistent and significant positive correlations
between performance and critical dynamics, it was also found that
under different conditions that did not result in learning (i.e., the
No-feedback condition), neural activity was still closer to criticality
than at rest. Yet, rather than challenging these previous studies, we
believe this data offers a pathway to unify results under a broader
perspective. Specifically, that criticality is not tied to general
processing, learning, or cognition, but is rather optimised for
specific tasks or types of information processing. Previously, cri-
ticality was found to be linked to stimulus discrimination, yet
decreased stimulus detection44. In our data this would be sup-
ported by the observed variation in mean DCC between different
feedback types for when the neuronal networks were engaged in
Gameplay. Most notably, the finding that the open-loop
No-feedback condition, where modulated activity from the cul-
ture was unable to affect the game outcome or alter the feedback
received, showed considerably closer dynamics to criticality than
when cultures were resting is interesting. This suggests that
structured information input alone may be sufficient to induce
these near-critical states in neuronal systems, however, informa-
tion alone is insufficient in creating an evolving learning system as
feedback is required as well. Furthermore, feedback does not
necessarily need to be a positive addition to the system as iden-
tified in the experiments utilizing Silent feedback conditions.
Taken in the context of attentional engagement and criticality, it is
possible that facilitating an external source of information to
impact the internal neural dynamics is necessary to drive these
characteristics observed here and may also relate to in vivo
results45,46. Indeed, a parallel may be made between groups of
biological systems such as bird flocks and insect swarms, which
have also been shown to exhibit criticality in movement patterns -

presumably without a collective cognition. Yet in these cases,
external information sources act upon the systems as a whole to
shape the broader response, as in the case of the embodied neu-
rons in this work.

Ultimately, here we found that by allowing cultures to be
embodied and alter the environmental stimulation through action
substantially pushes cultures closer to a critical dynamic compared
to purely spontaneous activity. Not only does this showcase the
utility of SBI systems for investigating these otherwise intractable
questions but offers support for the idea of considering criticality
as a spectrum. We propose that this work allows us to demonstrate
one end of this spectrum, where criticality requires the input of
structured information to a system to arise. This finding is entirely
consistent with all rigorous studies into criticality, yet highlights -
albeit with preliminary evidence - the importance of not relying
solely on investigating criticality in a steady state of activity, such
as spontaneous activity which is commonly done. Future work is
still needed to further explain the more specific role of criticality in
information processing and cognition - both in vivo and in vitro.
This early work also helps provide an understanding of how work
with embodied neural systems can be developed in an ethically
appropriate manner by improving our understanding of these
neurocomputational metrics and how they may or may not reflect
given traits of interests66,67. Yet while questions about how neural
criticality is linked with human cognition remain, ultimately, this
work has suitably established that closeness to criticality appears
as a fundamental property to neuronal assemblies, especially when
influenced by the input of structured information in a closed-loop
system. This provides additional compelling data to better
understand the critical aspects of how our brains process infor-
mation and may offer insight into more nuanced methods to
understand this dynamic for future investigations.

Methods
Cell culture & MEA setup
Neural cells were cultured either from the cortices of E15.5 mouse
embryos or differentiated from human induced pluripotent stem cells
(hiPSCs) via a dual SMAD inhibition (DSI) protocol or through a lenti-
virus based NGN2 direct differentation protocols as previously
described in ref. 48. MaxOne Multielectrode Arrays (MEA; Maxwell
Biosystems, AG, Switzerland) were coated with either poly-
ethylenimine (PEI) in borate buffer for primary culture cells or Poly-D-
Lysine for cells from an iPSC background before being coated with
either 10 μg/ml mouse laminin or 10 μg/ml human 521 Laminin
(Stemcell Technologies Australia, Melbourne, Australia) respectively
to facilitate cell adhesion. Approximately 106 cells were plated onMEA
after preparation as per ref. 48. Further details are described in Sup-
plementary Information sections 1.1 & 1.2.

Dishbrain platform and electrode configuration for input and
output
The current DishBrain platform is configured as a low-latency, real-
timeMEA control systemwith on-line spike detection and recording
software as described previously in ref. 48. Stimulation is applied in
a topographically consistent manner across 8 electrodes for the
relative position of the simulated ball to the simulated paddle in the
simplified pong game. Counterbalanced pre-designated regions
were defined, where greater activity across one set of regions would
cause the simulated paddle to move in one direction, while greater
activity in the other regions would prompt the paddle to move
inversely. Additional stimulation input was delivered as feedback in
response to the paddle either ’hitting’ or ’missing’ the simulated
ball. These details are described fully in Supplementary Information
sections 1.3–1.5.
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Data analysis
The avalanche analysis is performed in order to study the network in
terms of its distance fromcriticality. The start and stop of an avalanche
are determined by crossing a threshold of network activity3. An ava-
lanche can be initiated by spikes from any and all neurons within a
region of interest. The number of contributing spikes in each ava-
lanche (S) and the total durationof the event (D) are thenmeasured. To
demonstrate the distance from criticality in a cultured cortical net-
work, the presence of the following markers were investigated in the
dynamics of our data: 1) Power law observables; 2) Exponent relation;
3) Branching ratio parameter; and 4) Scaling function. Certain criteria
on these markers are the necessary conditions of a critical regime and
meeting those criteria can indicate with a high confidencewhether the
system lies near a critical point5,49.

Power lawobservables. A critical system has interacting components
(here, neurons) that show some fluctuation in their activity while also
maintaining a level of correlation between their individual activities
(here, individual spiking). Criticality implies that the system is defined
by scale free dynamics and that events in both the spatial and temporal
domains obey power laws61,68,69. For the networks considered here,
events are contiguous cascades of spiking activity, rather than limited
local bursts of spiking activity or huge network-wide spiking events.
These contiguous cascades of spiking activity are called neuronal
avalanches.

To investigate this property in our BNN system, binary spike
trains of each neuron’s activity were utilized. The whole duration of
each recording session was discretized to 50 ms bins. The sum of all
cells’ activities in each time bin was used as the network activity.
Next, a threshold of 40% of the median spiking activity in the net-
work among all time bins was introduced. The start and end points of
an avalanche were defined as the time points when the network
activity crossed this threshold value from below and then above53.
Our results were statistically robust across a range of activity
thresholds between 30% and 70%. The size of an avalanche, S, is the
total number of spikes during the avalanche. The avalanche duration,
D, is the time between threshold crossings. Similar to3, maximum
likelihood estimation was used to fit a truncated power law to the
avalanche size distribution:

f ðSÞ= S�τ

PSmax
Smin

S�τ
, ð1Þ

where τ is the power law exponent corresponding to avalanche sizes.
For a neuronal recording session in which NA avalanches are detected,
the fitting process to obtain the above equation is the following
iterative procedure70:
1. Find the maximum observed avalanche size Smax.
2. Evaluate the three different power law exponents, τ, for the

3 smallest avalanche sizes observed, Smin.
3. Calculate the Kolmogorov-Smirnov (KS) test for this estimation to

determine the goodness-of-fit between the fitted power law and
the empirical distribution.

4. Among the obtained KS values, choose the smallest one, together
with the corresponding τ and Smin values.

5. Complete the estimation if KS < 1ffiffiffiffiffi
NA

p or otherwise repeat steps 2 to

5 with Smax reduced by 1 until this condition is met.

Steps 3 to 5 are necessary to ensure the data distribution indeed
comes from a power law rather than another candidate heavy-tailed
distribution, such as log normal and stretched exponential forms71.
Applying the exact same procedure to the set of D of the avalanche
events, the corresponding power law exponent of αwas calculated for
the entire avalanche duration distribution.

To test the validity of a power law fit to avalanche distributions,
hypothesis testing was performed as described in ref. 3. For this pur-
pose, the power law exponent, the number of detected avalanches,
and the minimum and maximum avalanche sizes were set the same as
the experimental avalanche distribution to generate 1000 artificial
power law distributions. We generated these surrogate distributions
using the inverse method as S= Sminð1� rÞ �1

τ�1 where r was a random
number sampled from a uniform distribution between 0 and 1. Then
any surrogate distribution was upper-truncated at the maximum cut-
off equivalent to Smax from the empirical data. The KS statistics was
then employed to estimate the distance between the simulated sur-
rogate distributions and a perfect power law. The p value determining
the significance level was then equal to the ratio of the surrogate
distributions with KS values smaller than the KS value of the corre-
sponding experimental avalanche distribution. With significance level
set to 0.05, p <0.05 implies a rejection of the power law hypothesis
while p ≥0.05 suggests the power law hypothesis was not rejected (the
fit was good).

Exponent relation and deviation from criticality coefficient (DCC).
In critical systems, there is another exponent relationship between the
power law parameters (α and τ) and the exponent of mean avalanche
sizes (〈S〉), given their duration, D72. We first find this third power law
exponent of the system, β, from the experimental data using linear
regression given the following exponent relation is present in a critical
system:

hSi / Dβfit : ð2Þ
This third power law exponent also relates the size and duration

distributions of the avalanches and is predicted by:

βpred =
ðα � 1Þ
ðτ � 1Þ : ð3Þ

Comparing the fitted value from the empirical data (βfit) and its
estimation usingα and τ exponents (βpred), a newmeasure is derived to
evaluate theDeviation fromCriticality Coefficient (DCC), parameterised
as dCC:

dCC = k βpred � βfit k , ð4Þ

whereβpred andβfit are thepredicted andfitted values ofβ respectively.
Consequently, a smaller DCC value indicates a more accurately fit
power law distribution to the empirical data.

Branching ratio. The branching ratio is defined as the ratio of the
number of units (neurons) active (spiking) at time step t + 1 to the
number of active units (neurons) at time step t. Since a critical regime
is naturally balanced and avoids runaway gains, the critical branching
ratio is 1. Consequently, on average, network activity neither saturates
nor dampens over time.

Suppose that N active neurons are detected in total and the
number of active neurons in each time step t is defined by N(t). A fixed
branching ratio of m, gives:

hNðt + 1Þ jNðtÞi=mNðtÞ+h, ð5Þ

where 〈∣〉 is the conditional expectation and h is the mean rate of
external drive. The activity decreases if m < 1, whereas it grows expo-
nentially ifm > 1, meaning thatm = 1 separates these two regimens and
represents a critical dynamic point. A precise prediction ofm helps to
assess the risk that N(t) will develop large and devastating avalanches
of events such as epileptic seizures.

Under the circumstances when the full activity N(t) is known, m
can be conventionally estimated using linear regression. Nevertheless,
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when using subsampling,whenonly a fraction of neurons in a neuronal
network are sampled, this conventional methodwill be biased to some
extent. The bias vanishes only if all units are sampled, because it is
inherent to subsampling and cannot be overcome by obtaining longer
recordings. Instead, inspired by the method introduced in49 the sub-
sampled activity n(t) is utilized, where the fraction of recorded units to
all cells is defined as a constant μ. n(t) here is a random variable whose
expectation is proportional to the real N(t) and 〈n(t) ∣N(t)〉 = μN(t) + ξ,
where μ and ξ are constants. The bias value for the conventional linear
estimator can now be calculated as:

m
μ2varðNðtÞÞ
varðnðtÞÞ � 1

� �
: ð6Þ

To overcome this subsampling bias, the method introduced by
Wilting and Priesemann49 was utilized. Instead of directly using the
biased regression of activity at time t and t + 1, multiple linear regres-
sions of activity between times t and t + k were performed with dif-
ferent time lags k = 1, . . . ,kmax. Each of these k values returns a
regression coefficient rk with r1 being equal to the result of a conven-
tional estimator ofm.With subsampling, all these regression slopes are
biased by the same factor b= μ2varðNðtÞÞ

varðnðtÞÞ . In these circumstances, instead
of the exponential relation rk =mk which is expected under full sam-
pling, the equation generalizes to:

rk =
μ2varðNðtÞÞ
varðnðtÞÞ :mk =b:mk : ð7Þ

Having multiple calculated rk values, both b andm are estimated,
which are constant for all k.

Figure S6 compares the estimated branching ratio parameter
from 6 different cultured cortical networks during a Gameplay and a
Rest session.

Scaling function. Another feature of critical dynamics is that ava-
lanche shapes show fractal properties and all avalanche profiles of
different sizes are scaled versions of the universal same shape.
According to72, the value of β obtained from the exponent relation
analysis can be used to calculate a scaling function for the avalanche
shapes. For any given avalanche duration D, the average number of
neurons firing at time t (within D seconds) is defined by s(t,D). The
following relations hold in this system:

sðt,DÞ / DγF t
D

� �
hSiðDÞ =

RD
0 sðt,DÞdt,

ð8Þ

where F t
D

� �
is a universal function for all avalanches and γ = β − 1. Hence

in this process, an initial β is used to predict γ and using this γ and the
first term in Equation (8), F t

D

� �
is obtained as hsðt,DÞDγ i. Here 〈.〉 denotes

the average over all avalanches with duration D. A collection of F t
D

� �
functions are extracted for various D durations. The error for this
process is described as:

varðFÞ
ðmaxðFÞ �minðFÞÞ2

: ð9Þ

Repeating this process with various values for β, the exponent
that produces the smallest error in Equation (9) is selected as the final
scaling factor. Inprinciple, we expect to obtain similar (if not the same)
β values from this analysis and the estimates in Section 'Exponent
relation and Deviation from Critically Coefficient (DCC)' near the cri-
tical point. We report the difference between these two β values as the
SC error. The NCC toolbox inMATLAB50 was utilized to perform shape
collapseondata. This shape collapse error is expected tobeminimized
under critical conditions. For shape collapse, avalanches with

durations from 4 to 20 bins (200 to 1000ms) were considered. Across
the time course of our recordings, there were not enough avalanches
to conduct meaningful shape collapse analysis, beyond these cutoffs.

The schematic in Figure S7 summarizes the main attributes of a
near-critical system compared to super/sub-critical states.

Burst pattern analysis
Inspired by the methods and metrics for classification of bursts (or
avalanches) introduced in ref. 52, we extracted the following quanti-
tative details from the Rest state recordings of each in vitro culture
which were applicable to our dataset. These measurements were then
used as classifiers to distinguish between cultures based on their
bursting patterns and finally to identify whether any of the criticality
metrics studied in our paper showed a significant difference between
the classes of cultures with different bursting behaviors. The 1) Size
distribution of bursts (or avalanches), 2) Burst Rates of avalanches, and
3) Superbursts were the quantitative criteria extracted from all of the
rest state spontaneous activity of the cultures to classify them.

Below is a brief explanation of each calculated criteria:
• Size distribution: Within some recordings, bursts exhibited

highly similar sizes, while in others a broad range of burst sizes
was observed. The range of burst sizes varied among recordings,
with some displaying a continuum of sizes and others having
distinct clusters of large and small bursts with very few bursts of
intermediate size. In every recording from a specific culture, let
N* denote the number of spikes in the third-largest burst. Bursts
containing at least 75% ofN* spikes were classified as large, while
those with at least 25% but less than 75% of N* spikes were
classified as medium. Bursts containing fewer than 25% of N*
spikes were labeled as small. If the number of medium bursts
exceeded the number of large bursts, the burst size was
considered ‘variable’ or ‘irregular’. Conversely, if the number of
small bursts exceeded the number of large bursts, the burst size
distribution was considered ‘bimodal’. If the number of large
bursts exceeded that of medium or small bursts, the burst size
was deemed ‘fixed’. To avoid confusion with the terms employed
to classify distinct forms of bursting rates, we chose to use the
term ‘irregular’ instead of the original term (‘variable’) pro-
posed by52.

• Burst Rates: The categorization of burst patterns was further
expanded based on their burst rates, which were usually con-
sistent over time and could exhibit either regular ormore chaotic
intervals. A burst rate was considered ‘highly variable’ if the
maximum rate, calculated from the shortest time interval that
contained 10 inter-burst intervals, differed by a factor of 10 or
more from the minimum rate, calculated from the longest time
interval that contained only 3 inter-burst intervals. Otherwise, the
burst rate was classified as ‘non-variable’.

• Superbursts: A recording was classified as being dominated by
superbursts if at least half of all large and medium bursts occur-
red within tightly clustered intervals, where the inter-cluster
intervals were at least 10 times longer than the intra-cluster
intervals. Superbursts were categorized as ‘regular’ if the variance
of the number of bursts per superburst was small, i.e. less than
half of the average. If the variance exceeded this threshold, the
superbursts were classified as ‘short’ if themean number of bursts
per superburst was less than 10, or ‘long’ otherwise.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated for or used within this manuscript have been
deposited at Open Science Framework (OSF) and are publicly
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available here: https://osf.io/ncvpq/?view_only=8fc5fc5aad254
fce92a79390ae84b81c. Source data are provided with this paper.

Code availability
All code for data analysis to generate the results in this manuscript
have been deposited at Open Science Framework (OSF) and are pub-
licly available via https://osf.io/ncvpq/?view_only=8fc5fc5aad254fce
92a79390ae84b81c.
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