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Abstract

How do biological systems and machine learning algorithms compare
in the number of samples required to show significant improvements
in completing a task? We compared the inherent intelligence of in
vitro biological neural networks to the state-of-the-art deep reinforce-
ment learning (RL) algorithms in a simplified simulation of the game
‘Pong’. Using DishBrain, a system that embodies in vitro neural net-
works with in silico computation using a high-density multi-electrode
array, we contrasted the learning rate and the performance of these
biological systems against time-matched learning from three state of
the art deep RL algorithms (i.e., DQN, A2C, and PPO) in the same
game environment. This allowed a meaningful comparison between bio-
logical neural systems and deep RL. We find that when samples are
limited to a real-world time course, even these very simple biolog-
ical cultures outperformed deep RL algorithms across various game
performance characteristics, implying a higher sample efficiency. Ulti-
mately, even when tested across multiple types of information input to
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assess the impact of higher dimensional data input, biological neurons
showcased faster learning than all deep reinforcement learning agents.

Keywords: In Vitro, Neural Cultures, Deep Reinforcement Learning,
Synthetic Biological Intelligence, Sample Efficiency, Electrophysiology,
Biocomputing, Learning, Intelligence

1 Introduction

Both biological and machine intelligence systems demonstrate the ability to
learn and achieve goals. Although the complexity of, and drivers behind, these
tasks may differ, comparisons between these types of systems can yield valu-
able insights [1]. Even definitions of what traits artificial intelligence should
demonstrate are heavily informed by traits observed in biological intelligence
[2, 3]. Yet comparisons between biological and machine intelligence have been
notoriously difficult, as the scale of connections in even simple biological organ-
isms far exceeds that found in artificial neural networks or comparable Machine
Learning (ML) algorithms [4, 5]. However, by taking a system-based approach,
we aimed to compare data gathered from a biological neural network (BNN)
using the recently validated DishBrain system [6] against time-matched learn-
ing from deep reinforcement learning (RL) algorithms - DQN, A2C and PPO.
Despite the inherent differences between silicon and biological systems - such
as power consumption and network size - this approach makes it possible
to explore learning performance and efficiency in these different systems to
understand key differences in their information processing dynamics.

RL has become increasingly popular in the fields of ML and artificial
intelligence by offering a way of programming agents through reward and pun-
ishment cues without having to specify how the task is to be accomplished.
However, to deliver on this promise, formidable computational obstacles must
be overcome. RL implies learning the best policy to maximize an expected
cumulative long-term reward throughout many steps in order to achieve objec-
tives (goals) [7]. A deep RL approach integrates artificial neural networks with
an RL framework that helps the system to achieve its goals [8]. It maps states
and actions to the rewards they bring, combining function approximation and
target optimization. Reinforcement algorithms that incorporate deep neural
networks have been developed to beat human experts in multiple game settings
including: poker [9], multiplayer contests [10], complex board games, including
go and chess [11–13] and numerous Atari video games [14]. Nevertheless, RL
still faces real challenges including but not limited to: complexities in the selec-
tion of hyper-parameters and reward structure, sample inefficiency [15, 16],
reproducibility issues [17], and catastrophic forgetfulness [18, 19]. Furthermore,
to allow RL algorithms to train quickly requires considerable levels of com-
puting power [20] with notable associated environmental impacts [21]. Finally,
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RL algorithms are typically trained for narrow tasks in static environments;
where training and performance phases are separate [1, 19].

Holistically, these traits suggest that although deep RL algorithms are
highly functional, their learning mechanisms almost certainly differ fundamen-
tally from biological learning[1, 16, 22]. It is noted that RL as a mechanism
has been found to elicit rapid and adaptable learning in animals [23, 24]. Yet
it seems unlikely that similar underlying statistical mechanisms that support
RL, such as back-propagation and gradient descent, have biological parallels
in the brain [22, 25]. Ultimately, these mechanisms are likely too inefficient
to be accepted as plausible models of human learning [15, 26, 27]. This is
especially true when considering how intelligence may arise from cells with-
out established pathways of motivation. Early work investigating how cells
respond to stimulation that can be modified through their own activity showed
rapid adaptation displayed through synaptic plasticity [28–30]. Furthermore, it
was recently demonstrated that by using electrophysiological stimulation and
recording in a real-time closed-loop system with a monolayer of living biolog-
ical neurons, biological neural cells could be trained to significantly improve
performance in a simulated ‘pong’ game-world [6]. The question arises as to
whether the observed performance in these simple BNNs is notable compared
to that of RL at the same task, especially regarding sample efficiency.

DishBrain is a novel system shown to display simple biological intelligence
by harnessing inherent adaptive properties of neurons. In DishBrain, in vitro
neuronal networks are integrated with in silico computing via high-density
multi-electrode arrays (HD-MEAs). These cultured neuronal networks show-
case biologically-based adaptive intelligence within a simulated gameplay
environment in real-time through closed-loop stimulation and recordings
[6]. Specifically, BNNs exhibited self-organised adaptive electrophysiological
activity that was consistent with an innate ability to learn and showcase an
intelligent response to limited - although biologically plausible [31] - struc-
tured external information. Data was generated from cortical cells obtained
from either embryonic rodent or human induced pluripotent stem cell (hiPSC)
sources. These cell types were compared to assess reproducibility of learning
effects across species and preparations. Here, we investigate whether these
elementary learning systems achieve performance levels that can compete
with state-of-the-art deep RL algorithms. Additionally, by varying the input
information density presented during training of the RL algorithms, we can
determine the impact of information sparsity and ensure suitable comparisons
to the biological system. This is the first comparison between a Synthetic
Biological Intelligence (SBI) system [32] and state-of-the-art RL algorithms.
This research aims to investigate whether simple biological systems can
demonstrate characteristics compared to established RL methods to justify
further research in this area, either where SBI systems are standalone learning
devices, or inform further algorithm development in the ML space. We antici-
pate that SBI systems will exhibit greater sample efficiency than RL models,
as suggested by prior research. However, this entails constraining training



Springer Nature 2021 LATEX template

4 Biological Neurons vs Deep Reinforcement Learning

to a real-time approximate sample count for RL algorithms. Moreover, this
work explores biological reorganisation in the biological DishBrain system
facilitating the observed learning.

Figure 1.a,b illustrate the input information, feedback loop setup, and elec-
trode configurations in the DishBrain system and Figure 1.c illustrates the
comparison between input information in the DishBrain system and deep RL
algorithms.
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Fig. 1 DishBrain system and Various input designs to RL algorithms. a) Dish-
Brain feedback loop setup and Electrode configuration and predefined sensory and motor
regions. Figures adapted and modified from [6]. b) Schematic comparing the information
input routes in the DishBrain system (left) and the three implementations of the deep RL
algorithms (right). In each design, the input information to the computing module (deep
RL algorithms or DishBrain) is denoted by a vector I.
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2 Results

Game performance of human cortical cells (HCCs; 174 sessions) and mouse
cortical cells (MCCs; 110 sessions) was compared with three RL baseline meth-
ods. To determine how learning arises both in cultures and in baseline methods,
three key gameplay characteristics were examined. These include: mean hit-
to-miss ratio (average hits-per-rally), number of times the paddle failed to
intercept the ball on the initial serve (aces), and number of long rallies or
episodes (≥ 3 consecutive hits).

For comparison, every 70-episode run of each RL algorithm was mapped
to approximately 20 real-time minutes by normalizing the actual total length
of each run in minutes and then multiplying by 20. This approximates the
number of rallies biological cultures would experience in a 20-minute session.
Details of the implemented RL algorithms and information about the selected
hyper-parameters are included in Supplementary Materials A.4. Figures 2, 3,
and 4 represent the main findings for comparisons between biological cultures
and the Image Input, Paddle&Ball Position Input, and Ball Position
Input designs of the RL methods. The intent behind different input designs
was to determine whether varying the amount of information input into the
algorithm altered sample efficiency and learning characteristics of these sys-
tems. In particular, the Paddle&Ball Position Input, andBall Position
Input methods were intended to be more accurate comparisons to the infor-
mation density presented to the DishBrain system. Extended Data Tables S3
and S4 present all multivariate statistical tests performed in relation to the
following results. All post-hoc follow-up tests are presented in Extended Data
Table S2.

2.1 Comparison in performance between DishBrain and
three RL algorithms with various information
densities

In all three designs, biological cultures (i.e. HCC and MCC) outperform all RL
baseline algorithms (see Subfigures 2.a, 3.a, and 4.a) in terms of the highest
level of average hits-per-rally achieved. The cultures demonstrate faster learn-
ing rates over time. Subfigures 2.b, 3.b, and 4.b compare the % of aces among
the biological cultures and the RL groups given the three different designs.
HCC and MCC achieve the lowest percentage of aces compared to the deep RL
algorithms in Subfigure 2.b and the other RL baseline designs in Subfigures
3.b, and 4.b. The increasing trend in % of long rallies is observed in all groups
and among all designs except the DQN and PPO groups in the Image Input
design and PPO in the Paddle&Ball Position Input design, as illustrated
in Subfigures 2.c, 3.c, and 4.c. Average % of long rallies was highest for MCC
and HCC compared to RL baselines.

Key activity metrics in the first 5 minutes versus the last 15 minutes in
each session were compared to identify any significant improvement occurring
in the learning process within each group.



Springer Nature 2021 LATEX template

6 Biological Neurons vs Deep Reinforcement Learning

b)

a)

d)c)

e) f)i) j)

e) ]***
***]

] ]* ***
f) g)

***

***

]

]

**]

h)

Electrophysiological Input

Vs

DishBrain Image RL Algorithm

Fig. 2 Image Input to the deep RL algorithms. a) Schematic highlighting figure
comparisons are between biological DishBrain system and an pixel-based information input
to te RL algorithms. Average number of b) hits-per-rally, c) % of aces, and d) % of long
rallies over 20 minutes real-time equivalent of training DQN, A2C, PPO, and MCC, HCC
cultures. A regressor line on the mean values with a 95% confidence interval highlights the
learning trends. Comparing the performance amongst all groups, the highest level of average
hits-per-rally is achieved by the neuronal MCC and HCC cultures while PPO is outperformed
by all the opponents. The average % of aces is lowest for the neuronal cultures compared
to all deep RL baseline methods. The average % of long rallies reaches its highest levels
for MCC and HCC. e) Average performance of groups over time. Only biological cultures
have significant within-group improvement and increase in their performance at the second
time interval (One-way ANOVA test, p = 5.854e-6, p = 7.936e-17, for MCC and HCC
respectively; p = 0.231, p = 0.318, and p = 0.400 for DQN, A2C, and PPO respectively).
f) Average % of aces within groups and over time. Only MCC and HCC (One-way ANOVA
test, p = 0.014, p = 2.907e-08, respectively) differed significantly over time. No significant
change was detected within the DQN, A2C, or PPO groups (One-way ANOVA test, p =
0.080, p = 0.195, and p = 0.308, respectively). g) Average % of long-rallies (≥ 3) performed
in a session. All groups showed an increase in the average number of long rallies where this
within-group increase was significant only for MCC, HCC, and A2C (One-way ANOVA test,
p = 1.172e-7, p = 1.525e-24 for MCC and HCC, respectively and p = 0.605, p = 0.002, and p
= 0.684 for DQN, A2C, and PPO, respectively). *p < 0.05, **p < 0.01, and ***p < 0.001. h)
Pairwise Tukey’s post-hoc test shows that HCC and MCC groups significantly outperform
PPO, A2C, and DQN in the last 15 minutes interval. i) Using pairwise Tukey’s post-hoc
test, the HCC group significantly outperforms the PPO in the last 15 minutes interval with
a lower average of % Aces. A2C also outperforms PPO in this time interval. j) Pairwise
comparison using Tukey’s test only shows a significant difference in the percentage of long
rallies between HCC and the rest of the groups in the first 5 minutes. However, this is
later altered in the direction of all groups having an increased % of long rallies with MCC
outperforming PPO in the last 15 minutes of the game. Box plots show interquartile range,
with bars demonstrating 1.5X interquartile range, the line marks the median and the black
triangle marks the mean. Error bands = 1 SE
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Panel (d) in Figures 2, 3, and 4 compares average rally length between the
two defined time intervals within groups. The results imply that the within-
group increasing trend in rally length is significant only in the biological groups.

Panel (e) in Figures 2, 3, and 4 represents the change in average percentage
of aces over time. A significant decrease in number of aces (where the ball was
missed immediately in an episode with no accurate hits) implies an improved
game performance. Only MCC and HCC had a significant decrease in average
ace percentage as opposed to the rest of RL based algorithms with different
input designs.

Panel (f) in Figures 2, 3, and 4, shows that the percentage of long rallies
in the first 5 minutes versus the last 15 minutes only significantly increased
for biological cultures and A2C with the Image Input and Ball Position
Input designs.

Inter-group comparison was carried out for both time intervals (0-5 and 6-
20 minutes) and all three metrics using Tukey’s post-hoc test as represented in
panels (g), (h), and (i) in Figures 2, 3, and 4 for rally length (i.e. hit counts),
% of aces, and % of long rallies respectively.

Note, in the Image Input design, where average rally length of deep RL
methods comes closest to the biological cultures, the input information density
is starkly different between the two groups. While RL agents received pixel
data with a density of 40 × 40 pixels, biological cultures only receive input
from 8 stimulation points with a given integer rate code of 4Hz–40Hz, high-
lighting important efficiency differences in informational input between these
learning systems. The possibility of higher input information dimensionality
having adverse effects on overall sample efficiency of RL algorithms is fur-
ther nullified by evaluating two alternative input structures (Paddle&Ball
Position Input and Ball Position Input designs).

2.2 Examining impact of paddle movement speed on
learning rates

To account for potential effects of paddle movement speed and whether it plays
an important role in determining the success rate of paddle control, we derived
the average paddle movement (in pixels) for all groups. Subfigures 5.a,c, and
e represent these results for the Image Input, Paddle&Ball Position
Input, and Ball Position Input designs, respectively. Using Tukey’s post-
hoc tests, a consistently significant difference between pairs of DQN, PPO or
A2C with MCC or HCC was found in terms of average paddle movement,
with RL algorithms having the higher average. This occurs when all the RL
algorithms with different input designs have significantly higher average pad-
dle movement compared to both groups of biological cultures. As per previous
findings [6], increased paddle movement speed in RL algorithms does not trans-
late to improved game performance, likely suggesting a more stochastic paddle
control.
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Fig. 3 Paddle&Ball Position Input to the deep RL algorithms. a) Schematic high-
lighting figure comparisons are between biological DishBrain system and paddle and ball
position information input to RL algorithms. Average number of b) hits-per-rally, c) % of
aces, and d) % of long rallies over 20 minutes real-time equivalent of training DQN, A2C,
PPO, and MCC, HCC cultures. A regressor line on the mean values with a 95% confidence
interval highlights the learning trends. The highest level of average hits-per-rally is achieved
by the neuronal MCC and HCC cultures. The average % of aces is lowest for the neuronal
cultures compared to all deep RL baseline methods. The average % of long rallies reaches its
highest levels for MCC and HCC. Comparing to the same findings for the HCC and MCC
groups, e) average rally length over time only showed a significant increase in the biological
cultures between the two time intervals (One-way ANOVA test, p = 0.913, p = 0.958, and
p = 0.610 for DQN, A2C, and PPO respectively). f) Average % of aces within groups and
over time only showed a significant difference in the MCC and HCC groups. No significant
change was detected within the DQN, A2C, or PPO groups (One-way ANOVA test, p =
0.463, p = 0.338, and p = 0.544 respectively). g) Average % of long-rallies (≥ 3) performed
in a session increased in the second time interval in all groups. This within-group difference
was only significant for the MCC and HCC groups (One-way ANOVA test, p = 1.172e-7, p
= 1.525e-24, p = 0.233, p = 0.320, and p = 0.650 for MCC, HCC, DQN, A2C, and PPO,
respectively). *p < 0.05, **p < 0.01, and ***p < 0.001. h) Pairwise Tukey’s post-hoc test
shows that the HCC group is significantly outperformed by A2C and PPO in the first 5 min-
utes in terms of the hit counts or rally length. Biological cultures, however, do significantly
better compared to all deep RL opponents in the 15 minutes interval. i) Using pairwise
Tukey’s post-hoc test, HCC group significantly outperforms the DQN and A2C groups in
the last 15 minutes interval with a lower average of % Aces. DQN is also outperformed by
the MCC group in this time interval. j) Pairwise comparison using Tukey’s test shows a sig-
nificant difference in the percentage of long rallies between HCC and the rest of the groups
in the first 5 minutes all outperforming the HCC. However, this is later altered in the last 15
minutes with only MCC outperforming PPO significantly having an increased % of long ral-
lies. Box plots show interquartile range, with bars demonstrating 1.5X interquartile range,
the line marks the median, and the black triangle marks the mean. Error bands = 1 SE
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Fig. 4 Ball Position Input to the deep RL algorithms. a) Schematic highlighting
figure comparisons are between biological DishBrain system and a ball position information
input to RL algorithms. Average number of b) hits-per-rally, c) % of aces, and d) % of
long rallies over 20 minutes real-time equivalent of training DQN, A2C, PPO, and MCC,
HCC cultures. A regressor line on the mean values with a 95% confidence interval highlights
the learning trends. The highest level of average hits-per-rally is achieved by the neuronal
MCC and HCC cultures. The average % of aces is lowest for the neuronal cultures compared
to all deep RL baseline methods. The average % of long rallies reaches its highest levels
for MCC and HCC. Comparing to the same findings for the HCC and MCC groups, e)
average rally length over time only showed a significant increase in the biological cultures
between the two time intervals (One-way ANOVA test, p = 0.995, p = 0.812, and p = 0.547
for DQN, A2C, and PPO respectively). f) Average % of aces within groups and over time
only showed a significant difference in the MCC and HCC groups. No significant change
was detected within the DQN, A2C, or PPO groups (One-way ANOVA test, p = 0.241, p
= 0.581, and p = 0.216 respectively). g) Average % of long-rallies (≥ 3) performed in a
session increased in the second time interval in all groups except DQN. This within-group
difference was only significant for MCC, HCC, and A2C groups with p = 0.002 for the A2C
group. *p < 0.05, **p < 0.01, and ***p < 0.001. h) Pairwise Tukey’s post-hoc test shows
that biological cultures significantly outperform all deep RL groups in the last 15 minutes
in terms of the hit counts or rally length. i) Using pairwise Tukey’s post-hoc test, the HCC
group significantly outperforms all the deep RL groups in the last 15 minutes interval while
MCC also outperforms DQN with a lower average of % Aces. j) Pairwise comparison using
Tukey’s test shows a significant out-performance of all groups over HCC in the percentage
of long rallies in the first 5 minutes. In the second time interval, MCC shows a significantly
higher % of long rallies compared to DQN with HCC now being outperformed only by A2C.
Box plots show interquartile range, with bars demonstrating 1.5X interquartile range, the
line marks the median and the black triangle marks the mean. Error bands = 1 SE
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Subfigures 5.b, d, and f compare relative improvement in performance
between biological cultures and RL algorithms for Image Input, Pad-
dle&Ball Position Input, and Ball Position Input, respectively. This
measure identifies the relative increase in average accurate hit counts in the
second 15 minutes of the game compared to the first 5 minutes. The HCC group
shows the highest improvement in time. Post-hoc tests showed significant dif-
ferences between HCC and all the RL methods across all of the three different
input designs. The MCC group also outperforms PPO in both Image Input
and Paddle&Ball Position Input designs as well as DQN and A2C in the
Image Input and Paddle&Ball Position Input designs, respectively.

Subfigures 5.g, h, i, and j compare frequency tables for distributions of
mean summed hits per minute amongst groups for the Image Input, Pad-
dle&Ball Position Input, and Ball Position Input designs respectively.
These tables were not significantly different (Two-sample t-test).
Details of the implemented algorithms and hyper-parameters can be found in
the data repository provided in Section 4.5. For further exploration of selected
hyper-parameters, see Supplementary Materials A.5, A.4 and Extended Data
Figures B2, B3, B4, B5, B6, B8, and B9. In summary, it was found that similar
results were obtained across a variety of hyper-parameters, strongly supporting
the initial conclusions of this work.

2.3 Exploring biological neural networks activity
reorganization within learning sessions

The apparent highly sample efficient learning of BNNs remained starkly dif-
ferent from the RL algorithms. This sparked the mechanistic question as
to whether this performance difference was accompanied by an equally dis-
tinct and rapid system-wide reorganization of neural activity while cells were
embodied in a Gameplay environment, versus displaying spontaneous activ-
ity during rest. To explore this question, we analyzed spiking activity of each
HD-MEA channel to assess neuronal network dynamics and functional con-
nectivity. Understanding these complex dynamics is crucial for uncovering the
neural mechanisms behind the efficient learning that occurs in BNNs. We
characterized complex network dynamics in in-vitro neuronal systems during
two distinct activity states: spontaneous activity state with no stimulation
(Rest) and engagement in the previously discussed game environment of pong
(Gameplay).

A network matrix using functional connectivity – defined as pairwise zero-
lag Pearson correlations – among all channels was constructed for the entire
duration of all recordings. Figure 6.a - i. represent changes in network func-
tional connectivity when comparing the full duration of Gameplay and Rest
recordings from all of the 1024 channels available on the HD-MEA. Using one-
way t-tests, significant differences between Gameplay and Rest were found
for the number of nodes, number of edges, density, mean participation coeffi-
cient (pcoeff), average weight, and modularity index. No significant differences
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Fig. 5 Paddle movement and relative improvement. The average paddle movement
in pixels in all the different groups for the a) Image Input, c) Paddle&Ball Position
Input, and e) Ball Position Input to the deep RL algorithms. Tukey’s post-hoc test was
conducted showing that DQN, PPO, and A2C had a significantly higher average paddle
movement compared to HCC and MCC in all scenarios. Relative improvement (%) in the
average hit counts between the first 5 minutes and the last 15 minutes of all sessions in each
separate group for the b) Image Input, d) Paddle&Ball Position Input, and f) Ball
Position Input to the deep RL algorithms. The biological groups show higher improve-
ments with HCC outperforming all. b) Using Games Howell post-hoc test, the inter-group
differences were significant with HCC outperforming all other groups, as well as MCC sig-
nificantly outperforming PPO. d) HCC showed a significantly higher relative improvement
compared to all the other groups while MCC also outperformed A2C and PPO in terms of
relative improvement over time. f) Finally, HCC could still perform significantly better than
all the deep RL groups with the Ball Position Input design to the deep RL algorithms
with MCC outperforming PPO and DQN in this design. Distribution of frequency of mean
summed hits per minute amongst groups for g) biological cultures and deep RL algorithms
with h) Image Input, i) Paddle&Ball Position Input, and j) Ball Position Input.

were found for clustering coefficient, max betweenness, and characteristic path
length.

Recently, there has been a notable emphasis on extracting insights from
complex and high-dimensional networks by obtaining network embeddings in
lower dimensions [34–36]. Motivated by this, we implemented a dimensional-
ity reduction using the t-SNE algorithm [38] after dividing recording sessions
in half. Results presented in Figure 6.j, showcase t-SNE outcomes with color-
coded distinctions for the initial and latter portions of 20-minute Gameplay
and 10-minute Rest sessions across three samples. Discernible patterns emerge
in Gameplay but not in Rest, signifying distinctive network dynamics dur-
ing the learning process, predominantly observed in Gameplay which was
effectively captured in this lower dimensional space.

Furthermore, in light of previous findings that in complex neural networks
only a subset of neurons becomes active at any given moment and many do
not exhibit distinct action potentials [39], our objective was to enhance the



Springer Nature 2021 LATEX template

12 Biological Neurons vs Deep Reinforcement Learning

reduction of computational complexity when studying these neuronal popula-
tions while maintaining the dynamic properties of the network. Utilizing the
method introduced in [37], we identified a subset of key neurons (30 neurons)
characterizing the network’s behavior during Gameplay, to more efficiently
study this smaller and more interpretable network.
Next, by utilizing these low-dimensional representations, we recreated func-
tional connectivity matrices from these 30 channels as nodes, and edges
represented by Pearson correlations as described previously.

After constructing the connectivity networks, we aimed to examine their
temporal evolution in both Gameplay and Rest. To achieve this, we divided
each recording session into 2-minute windows and evaluated the change in edge
weights as the network evolved over those windows.
Figure 6.k. shows differences in the correlation between each pair of nodes when
comparing the last and first 2 minutes of each recording. This figure shows
the average networks over all Gameplay or Rest sessions with red/black colors
indicating increased/decreased correlations, respectively. The edge weights are
proportional to the absolute value of these differences in functional connectiv-
ity. Details of the utilized pipeline to construct these connectivity networks are
outlined in 4.3, and Supplementary Materials A.6 and Extended Data Figure
B10.
We found that biological cultures, while embedded in the game environment,
had a higher number of edges with increased correlation between channels.
This change was not apparent during rest state spontaneous activity. This indi-
cates significant network plasticity in these cultures that can be a necessary
underlying mechanism for the learning that happens in this closed-loop sys-
tem [6]. Moreover, we evaluated the network characteristics from all generated
networks and compared them between the first and last 2 minutes of record-
ings in both Rest and Gameplay groups. Figures 6.l - p. show these results. All
of these metrics except characteristic path length showed statistically signif-
icant differences during Gameplay, but not in Rest. Particularly, the average
weight of the networks only shows a significant increase in the Gameplay ses-
sions and modularity index significantly decreases only during Gameplay. A
higher modularity index indicates the presence of many connections within a
community but only few with other communities, while a lower index means
higher outward connections between different communities.

3 Discussion

The advantages and disadvantages of biological versus machine intelligence
are often discussed, yet technical limitations have prevented meaningful com-
parisons in terms of performance. In this work, we compare performance of
biological neuronal networks with that of state-of-the-art deep reinforcement
algorithms (deep RL). Using a controllable game environment of a simplified
pong simulation, it was possible to compare key traits between these different
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Fig. 6 Significant network plasticity occurs in biological cultures when embod-
ied in the game environment. a - i) Network summary statistics of 1024 recorded
channels using the full duration of all Gameplay and Rest sessions. Using one-way t-tests, we
found significant differences in the number of nodes (p = 3.072e-03), number of edges (p =
8.396e-26), density (p = 1.009e-25), mean participation coefficient (pcoeff) (p = 3.400e-02),
average weight (p = 8.910e-20), and modularity index (p = 4.129e-13) between Gameplay
and Rest. No significant differences were found for clustering coefficient (p = 0.568), max
betweenness (p = 0.890), or characteristic path length (p = 0.533). j) Low-dimensional rep-
resentation of 3 samples of Gameplay and their following Rest sessions using t-SNE. Purple
and maroon dots are channel representations in the embedding space in the first and sec-
ond half of the recordings. k) The average connectivity networks using the 30 representative
channels over all the Gameplay and Rest sessions with edge weights representing changes
in functional connectivity between channel pairs when comparing the last 2 minutes to the
first 2 minutes of recordings. Edge colors signify the direction of these connectivity changes,
with red indicating increases and black indicating decreases. Motor and sensory region chan-
nels are represented by blue squares and green circles, respectively. Arrows on motor region
nodes show the paddle’s movement direction as per their position in the predefined layout
in Figure 1.b. l - p) Network summary statistics between the first and last 2 minutes of
Gameplay and Rest recordings using the 30 representative channels in the lower-dimensional
space. All of these metrics except the characteristic path length showed statistically signifi-
cant differences using one-way ANOVA during Gameplay (p = 2.265e-3, p = 8.478e-8, p =
1.891e-6, p = 1.005e-4, and p = 0.071, respectively), but not in the Rest condition of the
cultures (p = 0.864, p = 0.670, p = 0.738, p = 0.281, and p = 0.899, respectively). *p < 0.05,
**p < 0.01, and ***p < 0.001.
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learning systems, with a focus on sample efficiency. Human or mouse corti-
cal cells (HCC or MCC) along with three deep RL algorithms (DQN, A2C,
and PPO), were compared in sessions with an average episode number of 70
games played. While direct comparisons between these systems are naturally
constrained (even what is referred to as a ”neuron” is inconsistent between
fields of research), the aim of this work was to determine whether meaning-
ful performance differences would arise between learning systems that may
merit further exploration of BNNs as information processing machines. This
approach allowed an examination of the overall performance of each group
with respect to various gameplay characteristics and, for the RL methods, in
response to varying information input.

Across all types of information input, BNN outperformed all RL baselines
in terms of average hit-per-rally (Subfigure 2.a), % of aces (Subfigure 2.b), and
% of long rallies achieved (Subfigure 2.c). Moreover, the increase in average
rally length, decrease in number of aces, and increase in number of long rallies
were significant only within the HCC and MCC groups and the A2C algorithm
with the Image Input and Ball Position Input designs in terms of the
increase in the percentage of long rallies, when comparing the first 5 and the
last 15 minutes during gameplay (see Subfigures 2.d, e, and f). Additionally,
we found that the HCC group had the highest relative improvement in average
number of hits between the first 5 minutes and last 15 minutes of the game as
depicted in Subfigures 5.b, d, and f.

Results show that the game performance of deep RL algorithms in terms
of relative learning improvement in time and average hits-per-rally is outper-
formed by biological cultures when number of allowable samples are fixed. This
supports the conclusion that RL algorithms showed significantly lower sample
efficiency compared to BNN, having lower improvements in learning over an
episode-matched training duration provided for all groups. This matches theo-
retical expectations previously outlined where it was proposed that biological
learning is inherently more sample efficient [1, 22]. Given how rapidly synap-
tic plasticity or behaviour changes have occurred for both in vitro and in vivo
models, this finding is consistent with such observations [23, 24, 28, 29, 41].
Here we extend upon previous work by examining the functional connectivity
of BNNs and observing both rapid and robust changes across multiple met-
rics during gameplay, compared to when unstimulated (rest). Furthermore,
although difficult to directly compare energy consumption, it should be noted
that biological systems use magnitudes less than traditional computing systems
used for ML [42].

Moreover, the comparison between the various machine learning algorithms
is also consistent with past research. A2C and PPO often achieve better results
compared to DQN which is in line with previous studies proposing that algo-
rithms optimizing a stochastic policy generally perform better than DQN [? ? ]
which is known to suffer more from low sample efficiency [52]. This can best be
seen in the relative performance between different levels of information input.
When a CNN was integrated into the RL models, some degree of learning (that
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did not reach statistical significance) was observed for these systems. BNN
received only a fraction of the input information density compared to their
RL opponents in this condition (8-pixel combination of rate coded and place
coded stimulation compared to 40 × 40 pixels of the input image). Moreover, it
was reasonable to consider whether the curse of dimensionality (where higher
dimension input can require additional episodes to converge to a minima) may
be adversely impacting the RL agents under the Image Input condition. To
account for potential disadvantages occurring as a result of increased input
dimensionality, we also examined two alternative designs for input structure to
the RL algorithms (i.e. Paddle&Ball Position Input and Ball Position
Input designs). In-depth comparison between BNN performance and these
alternative RL algorithms did not provide any significantly different outcome
in favour of the RL baselines’ sample efficiency (see Figures 3 and 4).

That BNN could perform with such sparsely coded informational input
conforms to coding mechanisms known to be used in biological intelligence
[31, 43, 44]. While RL algorithms use back-propagation, it has been argued that
this method is likely too inefficient to function within biological systems [15,
22, 25–27, 45]. A more dynamic reconfiguration of network activity has been
proposed to be necessary for the learning rates observed in biological cultures
[15, 26, 27, 46]. Theories of how this learning may occur include predictive
coding, active inference, prospective configurations, and Hopfield networks,
which have been used to describe how neural systems may reorganise activity
for learning tasks [26, 47–50]. While nuances amongst these different theories
exist, the general notion supports the idea of a more biological consistent
forward-based learning process compared to backpropagation.

To explore this, we explored a biologically inspired algorithm, implement-
ing an active inference agent that uses counterfactual learning and reported
the comparison results in Supplementary Materials A.7 and Extended Data
Figure B11. Improved learning rates observed in the biological inspired learning
protocol supports the potential of active inference agents to provide valuable
insights into optimized learning strategies, thereby enhancing our understand-
ing of these dynamics. However, these active inference algorithms are still
highly dependent on the chosen hyper-parameters and require relatively higher
power consumption compared to biological systems. Nonetheless, these results
highlight the value of further exploring biologically-inspired systems of learn-
ing and support the notion that SBI systems may offer a useful pathway to
do this in the future. Considering that biological neural systems can also work
massively in parallel, it is likely that learning effects observed in this work
also relate to observed network-wide alterations in activity, which have been
difficult to implement algorithmically as they are not yet fully understood
[6, 41]. Our analyses of functional connectivity network dynamics observed in
the biological cultures during gameplay versus rest reveals the scope and speed
with which these systems can reorganize activity. These results support the
value of investigating dynamic algorithms which allow network reorganization
in response to changing environments to improve sample efficiency in future
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ML algorithms. Interplay between individual neuronal activity and population
level activity adds further complexity to determining the mechanisms of learn-
ing within biological cultures. While limitations in study design (specifically
the use of opaque chips) prevent a robust assessment of the specific learn-
ing processes within the cultures used in this study beyond that previously
reported [6, 41], findings endorse this approach for future exploration of these
dynamics with altered study designs. Future work has potential to not only
understand how biological intelligence arises, but also how one may imple-
ment more advanced biologically inspired learning protocols that may surpass
current performance.

This work acts as the first direct comparison (to our knowledge) between
an SBI system and state-of-the-art RL algorithms on a comparable task. A
potential limitation of the work results from the fact that the space of hyper-
parameters is too large for an exhaustive search in each algorithm. However
to explore a significant number of hyper-parameters we used values utilized
in the original paper that introduced each algorithm. We tuned the hyper-
parameters that were most sensitive by a grid search in a limited space of
those parameters. As a result of their sensitivity to hyper-parameter selec-
tion, state-of-the-art deep RL algorithms remain challenging to apply. The
use of model-based RL is proposed for achieving higher sample efficiencies.
Model-free algorithms, however, often perform significantly better asymptot-
ically than these algorithms [51]. Recently, different accelerated approaches
have also been proposed for deep RL [51–53]. Nonetheless, many still lag behind
the performance of the original algorithms or require modern computers and a
combination of CPUs and GPUs prompting even higher computational costs
[54]. As a future pathway, these modified algorithms may be utilized for fur-
ther comparisons. Arguably, biological cultures operating with the DishBrain
system do not require such fine-tuning of parameters or manipulation of the
architecture.

Nonetheless, the results of this work supports that even rudimentary SBI
systems with limited informational input are viable learning systems that can
compete and even outperform established RL algorithms on sample efficiency.
Coupled with the promise of significant gains in power efficiencies, flexibility
of tasks, and upcoming improvements in the associated technologies[55], these
biological-based intelligence systems present a compelling pathway for realizing
real-time learning unachievable by current silicon-based approaches alone.

4 Methods

4.1 DishBrain System

The initial validation of the DishBrain system was previously presented in [6].
Briefly, cortical cells were either differentiated from human induced pluripotent
stem cells (hiPSC) using a modified Dual SMAD inhibition protocol or surgi-
cally extracted from E15 mouse embryos. By setting up cultures from multiple
cell sources this helped ensure that results would generalize across different
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species and preparations. Ethical approvals for animal work were obtained
(E/1876/2019/M: Alfred Research Alliance Animal Ethics Committee B) for
animal work with all cell culture work according to relevant ethical guidelines.
Cell line characterisation and approvals are reported in [6].

Approximately 106 cells were plated and integrated onto a high-density
multi-electrode array (HD-MEA; Maxwell Biosystems, AG, Switzerland). Cell
cultures were maintained in BrainPhys™ Neuronal Medium (Stemcell Tech-
nologies Australia, Melbourne, Australia) supplemented with 1% penicillin-
streptomycin during testing. The DishBrain system was developed as a low
latency, real-time system which interacts with the HD-MEA software to allow
closed-loop stimulation and recording which has previously been described in
detail [6]. Using this method, activity from a neuronal culture can be read,
along with providing structured stimulation to the same culture in real-time.
DishBrain was then utilized to embody neural cultures in a virtual game-world,
to simulate the classic arcade game ‘Pong’. Biphasic electrical stimulation was
used to stimulate neurons consistent with previous attempts to elicit action
potentials in comparable cultures [56]. Electrical stimulation was arranged
to transmit a variety of task-related information between the cells and the
simulated virtual environment using appropriate coding schemes via routed
electrodes on the MEA that were divided into discrete regions as in Figure 1.b.

Specifically, stimulation was applied using a combination of rate coding
(4Hz - 40Hz) electrical pulses to communicate the position on the x-axis and
place coding (on a given electrode that was arranged topographically from an
egocentric representation for the culture) to communicate information on the
y-axis into a predefined bounded two-dimensional sensory area consisting of
8 sensory electrodes to deliver this input information. Three types of input
were provided: the sensory stimulation as explained above, or stimulation in
response to activity designated as either ‘Predictable’ or ‘Unpredictable’ feed-
back (see Figure 1.a). Cultures received Unpredictable stimulation when they
missed connecting the paddle with the ‘ball’, i.e. when a ‘miss’ occurred. Using
a feedback stimulus at a voltage of 150 mV and a frequency of 5 Hz, an unpre-
dictable external stimulus could be added to the system. Random stimulation
took place at random sites over the 8 predefined sensory electrodes at random
timescales for a period of four seconds, followed by a configurable rest period
of four seconds where stimulation paused, then the next rally began. Should no
miss occur, the game would continue until either a miss occurred or the timer
of 20 minutes expired, which would end the session. In contrast, cultures were
exposed to Predictable stimulation when a ‘hit’ was registered - that is, when
the ‘paddle’ connected successfully with the ‘ball’. This was delivered across
all 8 stimulation electrodes simultaneously at 75mV at 100Hz over 100ms and
replaced other sensory information for 100 ms.

The movement of the paddle was controlled by the level of electrophysio-
logical activity measured in a predefined ‘motor area’ of the cultured network
as shown in Figure 1.b. , which was collected in real-time. Incoming samples
were filtered with a 2nd order high-pass Bessel filter with 100Hz cut-off. The
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absolute value was smoothed using a 1st order low-pass Bessel filter with a 1 Hz
cut-off and the spike threshold is proportional to this smoothed absolute value.
A relative activity spike of 6 sigma greater than background noise was then
used to define an action potential. Detected action potentials from counterbal-
anced motor regions were then summed together, where higher activity in a
given pair of regions would cause the virtual paddle to move in one direction,
while activity in the other regions would result in the inverse movement. Infor-
mation about ball position relative to the paddle was adjusted in a closed-loop
manner with a spike-to-stim latency of approximately 5ms. Figure 1.a,b illus-
trate the input information, feedback loop setup, and electrode configurations
in the DishBrain system.

The gameplay performance of cell cultures subjected to the simplified pong
environment via the DishBrain system was assessed. In each episode of the
game, the average number of rallies before the ball was missed for the first time
was then compared with different deep RL baseline methods. Each recording
session of the cultures during gameplay was 20 minutes. During a gameplay
session, the average number of rallies (i.e., episodes) an average biological
culture would perform was 69.04 ± 7.95 rallies/episodes. Therefore, to compare
sample efficiency in a matched comparison, a total of 70 training episodes were
provided to deep reinforcement learning algorithms during training.

More details of this system are introduced in Supplementary Materials A.1,
A.2, and A.3 as well as Extended Data Figure B1.

4.2 Deep Reinforcement Learning Algorithms

In this work, we use three state-of-the-art deep reinforcement learning algo-
rithms: Deep Q Network (DQN) [14], Advantage Actor-Critic (A2C) [57]
and Proximal Policy Optimization (PPO) [58], established to have good
performance in Atari games. Benefiting from deep learning advantages in
automated feature extraction, specifically exploiting Convolutional Neural
Networks (CNN) in their structures, these methods are robust tools in rein-
forcement tasks, particularly in games where the system’s input is an image.
In this work, aiming to account for potential detriments to sample efficiency
resulting from the increased dimensionality of the image input to the deep RL
algorithms [59], we designed two additional types of input information to the
RL algorithms. We compare all three different designs with the performance
of biological cultures. We attempt to study whether the curse of dimension-
ality and increased size of the feature vectors when directly utilizing image
inputs affect the comparison between biological cultures and RL algorithms in
terms of their sample efficiency. All the algorithms follow a common strategy
although they are different in structure. The three different input categories
and RL algorithm designs are introduced below:

• Image Input: The current state is a tensor of the difference of pixel values
from the two most recent frames (i.e. another 40 × 40 grayscale pixel image)
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1. This current state is then input into the CNN to obtain the selected
action. Next, based on the action taken, a reward is received, and a new
state is formed. The ultimate goal is to find a policy that indicates the best
action in each state to maximize the reward function.

• Paddle&Ball Position Input: Instead of the grayscale image, a 4-
dimensional vector encoding the x and y coordinates of the ball (distance
to the paddle/wall and distance to the floor in pixels) and the y coordinates
of the paddle’s top and the bottom was obtained. All values are integers
between [4, 40]. The current state which is the input to each algorithm is then
a tensor of the difference of values from the two most recent 4-dimensional
location vectors. No additional CNN layer is utilized in this case.

• Ball Position Input: A design as similar to the DishBrain system’s input
structure as possible was also examined. For this case, the y-axis of the
gameplay environment was divided into 8 equal segments each mimicking
one of the sensory electrodes in the biological cultures, and place coding the
information about the ball’s y-axis position as an integer in the [1, 8] interval.
Then, the ball’s x-axis position is used as the second element of this input
vector being an integer value in [4, 40] similar to the rate coded component
of the stimulation applied to the biological cultures. No additional CNN
layer is utilized in this design.

The overview of the implemented DQN, A2C, and PPO algorithms are
represented in Supplementary Materials A.4 (see Algorithms 1, 2, and 3).

All the deep RL implementations run on a 2.3 GHz Quad-Core Intel Core
i5. PyTorch 1.8.1 was used to build neural network blocks and Open AI Gym
environment to define our game environment represented by a 40 × 40 pixel
grayscale image. In the training phase of all RL algorithms, every algorithm
was run for 150 random seeds and a total number of 70 episodes for each seed.
These seeds imply 150 different neural networks trained separately, resembling
150 different recorded cultures. In this work, we report the average value of
each metric among all seeds.

4.3 Connectivity Network Construction

First, we grouped the activity of each recorded channel into bins of spikes, with
a set length. In this study, we used a window of 100ms, with a 50ms sliding
window to sort spikes into bins. A network matrix using functional connectiv-
ity – defined as the zero-lag Pearson correlations – of each Gameplay or Rest
session recording was constructed across all bins. Then, the number of nodes,
which represents the number of active electrodes during one full recording, the
number of edges, which represents the Pearson Correlations between pairs of
nodes, density, which represents the ratio between the number of connections
and the number of possible connections in a fully-connected graph, the mean

1We also experimented with an alternative design where the input consisted of a stack of the
four most recent frames for all algorithms. However, this modification led to a noticeable decline
in the performance of all the methods because it failed to capture the sense of motion between
frames.
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participation coefficient (pcoeff), which represents the diversity of intermodu-
lar connections of individual nodes [33], average weight or degree of each node,
modularity index, which represents the degree to which the network may be
subdivided into modules, clustering coefficient which represents the fraction
of node’s neighbors that are neighbors of each other, max betweenness, which
represents the maximum value of betweenness centrality that reflects the num-
ber of nodes that participate in a large number of shortest paths, and the
characteristic path length which represents the average shortest path length
in the network were calculated.

In the realm of unraveling information from intricate and high-dimensional
networks, a significant recent focus has been directed towards the exploration
of obtaining network embeddings in lower dimensions. The central aim of this
approach is to obtain vector representations for individual nodes within the
network, capturing valuable and meaningful insights [34–36].
Hence, in this work, we first employed a dimensionality reduction algorithm
to both enhance the computational efficiency of subsequent data analysis and
improve data interoperability [37]. To determine which areas of the network
were most responsible for learning, we first embedded the spiking activity of all
the recorded channels in a lower-dimensional space using t-SNE [38] method.
To evaluate the effectiveness of this metric in capturing learning-related net-
work structures, we divided recording sessions in half before implementing
dimensionality reduction. Results presented in Figure 6.j. showcase t-SNE
outcomes with color-coded distinctions for the initial and latter portions of
20-minute Gameplay and 10-minute Rest sessions across three samples.

Furthermore, in complex neural networks, only a subset of neurons becomes
active at any given moment, and many do not exhibit distinct action poten-
tials. Recent findings highlight the development of specialized, selective, and
abstract response properties in the cortex [39], underscoring the significance of
sparse activity and connectivity patterns. These patterns conserve energy and
enhance computational efficiency [40], highlighting the redundancy inherent
in assessing individual neuron firing patterns. The brain’s capacity to encode
and process information depends on the coordinated activity of neuronal pop-
ulations, often conveying redundant or highly correlated signals.
In light of these collective behaviors observed in neuronal networks, our objec-
tive was to enhance the reduction of computational complexity when studying
these neuronal populations, all the while maintaining the dynamic properties
of the network. We devised a method to pinpoint a subset of recorded chan-
nels that likely monitored the neuronal populations especially attuned to the
ongoing task. This subset enables the identification of key neurons character-
izing the network’s behavior during Gameplay, to more efficiently study the
(macroscopic) of this smaller and interpretable network.
Hence, instead of utilizing all of the 1024 channels, we extracted a subset of
representative channels following a K-medoid clustering algorithm, creating
30 clusters, and extracting the corresponding “medoids” as the representa-
tive channel for each cluster. Selecting K > 30 clusters did not significantly
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improve the clustering accuracy measured by the Davies-Bouldin index. Next,
by utilizing these low-dimensional representations, we recreated the functional
connectivity matrices from these 30 channels as the nodes and the edges
between these nodes represented by Pearson correlations as described previ-
ously. Only edges with an absolute Pearson correlation above 0.7 were kept. We
then explored the patterns of the previously introduced macroscopic neuronal
network dynamics during learning. Details of the utilized pipeline to construct
these connectivity networks are outlined in Supplementary Materials A.6 and
Extended Data Figure B10.

After constructing the connectivity networks, we aimed to examine their
temporal evolution in both Gameplay and Rest. To achieve this, we divided
each recording session into 2-minute windows and evaluated the change in edge
weights as the network evolved over those windows.

4.4 Data Availability

All data generated for or used within this manuscript have been deposited
at Open Science Framework (OSF) and are publicly available here: https:
//osf.io/cnpzf/?view only=a33b7083f78e4c55a20b6c021a695a4a.

4.5 Code Availability

All code for deep reinforcement learning models or used for data analysis to
generate the results in this manuscript have been deposited at Open Science
Framework (OSF) and are publicly available via https://osf.io/cnpzf/?view
only=a33b7083f78e4c55a20b6c021a695a4a.

4.6 Supplementary information

Supplementary Materials; Extended Data; Tables S1 - S3
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Appendix A Supplementary Materials

A.1 Cell Culture

Neural cells were cultured either from the cortices of E15.5 mouse embryos or
differentiated from human induced pluripotent stem cells via a dual SMAD
inhibition (DSI) protocol as previously described [6]. Cells were cultured until
plating onto MEA. For primary mouse neurons, this occurred at day-in-vitro
(DIV) 0, for DSI cultures this occurred at between DIV 30 - 33 depending on
culture development.

A.2 MEA Setup and Plating

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzer-
land) was used and is a high-resolution electrophysiology platform featuring
26,000 platinum electrodes arranged over an 8 mm2. The MaxOne system is
based on complementary meta-oxide-semiconductor (CMOS) technology and
allows recording from up to 1024 channels. MEAs were coated with either
polyethylenimine (PEI) in borate buffer for primary culture cells or Poly-D-
Lysine for cells from an iPSC background before being coated with either 10
µg/ml mouse laminin or 10 µg/ml human 521 Laminin (Stemcell Technolo-
gies Australia, Melbourne, Australia) respectively to facilitate cell adhesion.
Approximately 106 cells were plated on MEA after preparation as per [6]. Cells
were allowed approximately one hour to adhere to the MEA surface before the
well was flooded. The day after plating, cell culture media was changed for all
culture types to BrainPhys™ Neuronal Medium (Stemcell Technologies Aus-
tralia, Melbourne, Australia) supplemented with 1% penicillin-streptomycin.
Cultures were maintained in a low O2 incubator kept at 5% CO2, 5% O2, 36°C
and 80% relative humidity. Every two days, half the media from each well was
removed and replaced with free media. Media changes always occurred after
all recording sessions.

A.3 DishBrain platform and electrode configuration

The current DishBrain platform is configured as a low-latency, real-time MEA
control system with on-line spike detection and recording software. The Dish-
Brain platform provides on-line spike detection and recording configured as a
low-latency, real-time MEA control. The DishBrain software runs at 20 kHz
and allows recording at an incredibly fine timescale. There is the option of
recording spikes in binary files, and regardless of recording, they are counted
over a period of 10 milliseconds (200 samples), at which point the game
environment is provided with how many spikes are detected in each electrode
in each predefined motor region as described below. Based on which motor
region the spikes occurred in, they are interpreted as motor activity, moving
the ‘paddle’ up or down in the virtual space. As the ball moves around the
play area at a fixed speed and bounces off the edge of the play area and the
paddle, the pong game is also updated at every 10ms interval. Once the ball
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hits the edge of the play area behind the paddle, one rally of pong has come
to an end at which point a ’miss’ would be recorded and an unpredictable
stimulation would be delivered to the cells. Using a feedback stimulus at a
voltage of 150 mV and a frequency of 5 Hz, unpredictable external stimulus
could be added to the system. Random stimulation took place at random
sites over the 8 predefined input electrodes at random timescales for a period
of four seconds, followed by a configurable rest period of four seconds where
stimulation paused, then the next rally began.

In contrast, a predictable stimulus feedback is provided when the ball con-
tacts the paddle under the standard stimulus condition. Predictable stimulus
feedback involves 75mV stimulation at 100Hz over 100ms occurring when the
simulated ball struck the paddle and replaced other sensory information. All 8
stimulation electrodes simultaneously would receive predictable stimulation at
this frequency and period. A ‘stimulation sequencer’ module tracks the location
of the ball relative to the paddle during each rally and encodes it as stimula-
tion to one of eight stimulation sites. Each time a sample is received from the
MEA, the stimulation sequencer is updated 20,000 times a second, while the
game itself runs at 100Hz. After the previous lot of MEA commands has com-
pleted, the DishBrain system constructs a new sequence of MEA commands
based on the information it has been configured to transmit based on both
place codes and rate codes. The stimulations take the form of a short square
bi-phasic pulse that is a positive voltage, then a negative voltage. This pulse
sequence is read and applied to the electrode by a Digital to Analog Converter
(or DAC) on the MEA. A real-time interactive version of the game visualizer
is available at https://spikestream.corticallabs.com/. Alternatively, cells could
be recorded at ‘rest’ in a gameplay environment where activity was recorded
to move the paddle but no stimulation was delivered, with corresponding out-
comes still recorded. Using this spontaneous activity alone as a baseline, the
gameplay characteristics of a culture were determined. Low level code for inter-
acting with Maxwell API was written in C to minimize processing latencies-so
packet processing latency was typically <50 µs. High-level code was written in
Python, including configuration setups and general instructions for game set-
tings. A 5 ms spike-to-stim latency was achieved, which was substantially due
to MaxOne’s inbuilt hardware buffering. Figure B1 illustrates a schematic view
of Software components and data flow in the DishBrain closed loop system.

A.4 Deep Reinforcement Learning Algorithms

Deep Q Network (DQN): The utilized DQN algorithm begins by extract-
ing spatiotemporal features from inputs, such as the movement of the ball in
the game of ‘Pong’. Multiple fully connected layers are used to process the
final feature map, which implicitly encodes the effects of actions. As opposed
to traditional controllers that use fixed preprocessing steps, this method can
adapt the processing of the state based on changes in the learning signal. An
epsilon-greedy algorithm was employed in this work to balance the exploration

https://spikestream.corticallabs.com/
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and exploitation capabilities of the DQN algorithm.
For the results represented in this manuscript, a comprehensive grid search
was conducted within the parameter space of learning rate ([0.0001, 0.004]),
replay buffer size ([10, 100000]), and the training batch size ([5, 128]) with
starting point of 0.0001, 32, 10000, respectively, aiming to identify the optimal
parameter configuration. The results presented in this paper are derived from
the superior set of hyper-parameters obtained through this search process. As
the outcome of this search for the DQN algorithm, we selected learning rate
= 0.002, replay buffer size = 10000, and batch size = 16 for the results of
Figure 2, learning rate = 0.001, replay buffer size = 10000, and batch size =
16 for the results of Figure 3, and learning rate = 0.001, replay buffer size =
10000, and batch size = 32 for the results of Figure 4. Figure B2 illustrates
the performance of the DQN algorithm with Image Input design in terms of
average rally length in several sample points of the mentioned search space.
While exploring each hyper-parameter in Figure B2, the remaining pair are
set to the same values as the starting point of the search (i.e. learning rate =
0.0001, batch size = 32, and replay buffer size = 10000 ).
For additional details on the set of explored hyper-parameters and network
architectures, see Table S1.

Algorithm 1 Deep Q Network (DQN) with Experience Replay

Require:
1: D: Replay buffer with size N (Default: 10000)
2: θ: Initial network parameters
3: θ̃: Copy of θ
4: γ: Discount factor (Default: 0.95)
5: Nb: Training batch size (Default: 16)

6: Ñ : Target network update frequency (Default: 10)
7: xt: Input matrix at time t
8: S: Number of seeds (Default: 150)
9: emax: Maximum number of episodes (Default: 70)

10: for seed ∈ {1, · · · , S} do
11: for episode e ∈ {1, · · · , emax} do
12: Set state s1 ← x1 and preprocess ϕ1 = ϕ(s1)
13: t = 1
14: while ϕt is non-terminal do
15: With probability ϵ select a random action at
16: otherwise select at = maxaQ

∗(ϕ(st), a; θ)
17: Execute action at and observe reward rt and input xt+1
18: Set new state st+1 and preprocess ϕt+1 = ϕ(st+1)
19: Store transition (ϕt, at, rt, ϕt+1) in D
20: Sample random minibatch of Nb transitions(ϕj , aj , rj , ϕj+1) from D

21: Set yj =

{
rj for terminal ϕj+1

rj + γmaxa′Q(ϕj+1, a
′; θ) for non-terminal ϕj+1

22: Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))
2

23: Replace target parameters θ̃ ← θ every Ñ steps
24: t = t+ 1
25: end while
26: end for
27: end for



Springer Nature 2021 LATEX template

Biological Neurons vs Deep Reinforcement Learning 33

Advantage Actor-Critic (A2C): In an A2C model, the total reward
itself could be represented as a value of the state plus the advantage of the
action. The value of each policy is learned while following it. The policy gradi-
ent can be calculated by knowing the value for any state. The policy network
is then updated such that the probability of actions with a higher advantage
value is increased. Here, the policy network (which returns a probability distri-
bution of actions) is called the actor, as it tells the agents what to do. Critic is
another network that enables the evaluation of the actions to decide whether
they were good or not. In this case, policy and value are implemented as sepa-
rate heads of the network, which transform the output from the common body
into either probability distributions or single numbers representing the state’s
value. Thus, low-level features can be shared between the two networks.
For the results represented in the main paper, a comprehensive grid search was
conducted within the parameter space of actor learning rate ([0.0001, 0.004]),
critic learning rate ([0.0001, 0.004]), and the training batch size ([5, 128]), to
identify the optimal parameter configuration. As the outcome of this search
for A2C, we selected actor learning rate = 0.001, 0.0001, 0.003, critic learning
rate = 0.001, 0.001 , 0.001, and batch size = 32, 32,5 for the results of Figure
2, 3, and 4, respectively. Figure B2 contains the results of this hyper-parameter
search for the A2C algorithm with the Image Input design in terms of aver-
age rally length in several sample points of the mentioned search space. While
exploring each hyper-parameter in Figure B2, the remaining pair are set to
the same values as the starting point of the search (i.e. actor learning rate =
0.0001, batch size = 32, and critic learning rate = 0.001 ).
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Algorithm 2 Advantage Actor-Critic (A2C)

Require:
1: θv: Initial parameter vector for the value net (critic)
2: θπ: Initial parameter vector for the policy net (actor)
3: γ: Discount factor (Default: 0.95)
4: N : Number of consecutive steps to play current policy in the environment

(Default: 5)
5: xt: Input matrix at time t
6: S: Number of seeds (Default: 150)
7: emax: Maximum number of episodes (Default: 70)
8: for seed ∈ {1, · · · , S} do
9: t = 1

10: e = 1
11: repeat
12: ∂θπ ← 0 and ∂θv ← 0
13: tstart = t
14: Set state st ← xt and preprocess ϕt = ϕ(st)
15: repeat
16: Select at according to π(at | ϕt; θ)
17: Execute action at and observe reward rt and input xt+1
18: Set new state st+1 and preprocess ϕt+1 = ϕ(st+1)
19: t← t+ 1
20: until ϕt is terminal or t− tstart = N

21: R =

{
0 for terminal ϕt

V (ϕt; θv) for non-terminal ϕt

22: for i ∈ {t− 1, · · · , tstart} do
23: R← ri + γR
24: Accumulate the policy gradients: ∂θπ ← ∂θπ+∇θ log π(ai | ϕi; θ)

(
R−

V (ϕi, θv)
)

25: Accumulate the value gradients: ∂θv ← ∂θv +
∂
(
R−V (ϕi,θv)

)2
∂θv

26: end for
27: Update θπ and θv using ∂θπ and ∂θv, respectively.
28: if ϕt is terminal then
29: e← e+ 1
30: end if
31: until e > emax
32: end for

Proximal Policy Optimization (PPO): PPO models are a family of
policy gradient methods for reinforcement learning. The PPO method uses
a slightly different training procedure: An extended set of samples is taken
from the environment, and then the advantage is estimated for the whole set
or sequence of samples before several epochs of training are performed To
estimate policy gradients, instead of using the gradient of action probabilities,
the PPO method uses a different objective: the ratio between the new and the
old policy scaled by the advantages.
Once more, for the results represented in the main paper, we used the outcome
of a grid search for the PPO algorithm in the same space as A2C above and
utilized actor learning rate = 0.003, 0.0001, 0.001, critic learning rate = 0.003,
0.001 , 0.001, and batch size = 16, 16, 32 to generate the results of Figure 2,
3, and 4, respectively.
Figure B2 represents the performance of the PPO algorithm with the Image
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Input design in terms of average rally length in several sample points of the
mentioned search space. While exploring each hyper-parameter in Figure B2,
the remaining pair are set to the same values as the starting point of the search
(i.e. actor learning rate = 0.0001, batch size = 32, and critic learning rate =
0.001 ).

Algorithm 3 Proximal Policy Optimization (PPO)

Require:
1: θ: Initial policy parameter vector
2: ϵ: Clipping threshold (Default: 0.2)
3: γ: Discount factor (Default: 0.95)
4: λ: GAE parameter (Default: 1)
5: N : Number of consecutive steps to play current policy in the environment

(Default: 32)
6: xt: Input matrix at time t
7: S: Number of seeds (Default: 150)
8: emax: Maximum number of episodes (Default: 70)
9: for seed ∈ {1, · · · , S} do

10: t = 1
11: e = 1
12: repeat
13: tstart = t
14: Set state st ← xt and preprocess ϕt = ϕ(st)
15: repeat
16: Select at according to π(at | ϕt; θ)
17: Execute action at and observe reward rt and input xt+1
18: Set new state st+1 and preprocess ϕt+1 = ϕ(st+1)
19: t← t+ 1
20: until ϕt is terminal or t− tstart = N
21: Collect set of partial trajectories D on current policy π

22: Estimate Advantages Âπ
t = σt+(γλ)σt+1+ · · ·+(γλ)N−t−1σN−1, where

σt = rt + γV (ϕt+1)− V (ϕt)

23: θ ← argmaxθLCLIP
θ (θ)

24: where LCLIP
θ (θ) = Eτ∼π

[∑T
t=0

[
min(rt(θ)Â

π
t , clip(rt(θ), 1 − ϵ, 1 +

ϵ)Âπ
t )

]]
25: if ϕt is terminal then
26: e← e+ 1
27: end if
28: until e > emax
29: end for

Figure B7 illustrates the mean total reward of the RL algorithms using
the same hyper-parameter sets as in Figure 2 for an extended training period
of 11000 game episodes. These results demonstrate successful learning and
improved performance over an extended number of training episodes for all
three algorithms.



Springer Nature 2021 LATEX template

36 Biological Neurons vs Deep Reinforcement Learning

Table S1 Experimented Hyper-parameter and network architecture details

Hyper-parameter Algorithm Tested Values

Conv1 size DQN,A2C,PPO (16 × 16)*, (64 ×64)

Conv2 size DQN,A2C,PPO (32 × 32), (64 ×64)

Conv3 size DQN,A2C,PPO (32 × 32), (64 ×64)

last hidden layer size DQN,A2C,PPO {100, 256, 512}

number of seeds DQN,A2C,PPO 150

kernel size DQN,A2C,PPO {5, 4}

stride DQN,A2C,PPO 2

batch size DQN,A2C,PPO [5,128]

discount factor DQN,A2C,PPO {0.85, 0.95, 0.99, 0.999}

learning rate DQN [0.0001, 0.004]

replay buffer size DQN [10, 100000]

actor-learning rate A2C,PPO [0.0001, 0.004]

critic-learning rate A2C,PPO [0.0001, 0.004]

clipping threshold PPO {0.1, 0.2, 0.3}

num of epochs PPO {5, 8, 10}
* The parameter values jointly chosen for all algorithms are highlighted in bold.

A.5 Additional Hyper-parameter Exploration

Effect of Batch Size on Deep RL Algorithm Performances:
From a technical standpoint, there exist no foolproof techniques for identify-
ing the ideal hyper-parameter configuration for training deep RL algorithms.
In addition, the batch size has an impact on the convergence rate of the pre-
diction network, with smaller batch sizes resulting in faster convergence and
well-known degradation in model quality and generalization abilities that can
occur with increased batch sizes [60]. As such, originally we aimed to select
batch sizes that would converge within sample numbers comparable to the
training period of biological cultures while attempting to prioritize computa-
tional efficiency, which is a significant area of interest in this study. Hence,
opting for large batch sizes may significantly slow down the model convergence
and would not confer any benefit to the RL algorithms under investigation.

Figures B3, B4, and B5 investigate the impact of changing batch sizes
utilizing the Image Input design by incorporating batch sizes of 8, 16, 32,
and 64 while keeping the rest of the hyper-parameters in each algorithm fixed
at default levels similar to Figure B2 (i.e. learning rate = 0.0001, batch size =
32, and replay buffer size = 10000 for DQN and actor learning rate = 0.0001,
batch size = 32, and critic learning rate = 0.001 for A2C and PPO).

In general, we observed some quantitative changes in outcome metrics
when varying the batch size for these algorithms, but these adjustments did
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not alter the ultimate conclusions of our work. Focusing on the quality of
learning in each group and the comparison of sample efficiency, both of these
were unaffected or in some cases worsened by increasing the batch size. Specif-
ically, when examining the statistical significance of metric changes during
the first 5 minutes versus the last 15 minutes of training and overall relative
improvement, increased batch size did not appear to significantly impact the
resulting sample efficiency in any of the algorithms as seen in Extended Data
Figure B6.

In some cases, these results illustrate an unwanted trend in the main
metrics of interest when increasing the batch size above certain levels. For
instance, an increasing % of aces in the DQN and PPO algorithms, decreasing
average rally length in PPO, and decreasing % of long rallies in both A2C
and PPO algorithms are observed which may eventually prevent the model
from converging to the optima. This suggests that if the comparison were
to be extended to a larger number of episodes for all groups, the increase in
batch size would not necessarily yield improved performances, as evidenced
by the undesirable trend observed in the aforementioned metrics (Extended
Data Figures B3, B4, and B5). Notably, this may occur due to the fact that
larger batch sizes make larger gradient steps than smaller batch sizes for the
same number of samples seen and the update is heavily dependent on the
specific samples drawn from the dataset. Conversely, a small batch size leads
to updates that are more consistent in size, with the size of the update being
only weakly dependent on which particular samples are selected from the
dataset. In conclusion, it is possible that in deep neural networks, optimal
weight configurations are located far from the initial weights. Hence, averag-
ing the loss function over large batch sizes may not allow the model to explore
a large enough space to reach the optimal weight configurations within the
same number of training epochs.

Effects of Adding Hidden Layers on DQN Performance:
To evaluate the effect of adding extra hidden layers on the performance of
Ball Position Input and Paddle&Ball Position Input designs to the
DQN algorithm, we implemented them by adding 2 additional hidden layers
before the output layer and incorporating a batch size = 32. Extended Data
Figure B8 shows the outcomes of these adjustments.

This further analysis revealed that although certain metrics exhibited qual-
itative and quantitative changes in their trends, the overall sample efficiency
performance remained unaffected and even worsened with the inclusion of addi-
tional hidden layers. For example, we noted a degradation and an unwanted
decreasing trend in the DQN’s performance in the % of long rallies for the
Paddle&Ball Position Input design. This resulted in the MCC group
significantly outperforming DQN Paddle&Ball Position Input design in
terms of % of long Rallies during the second 15 minutes. The performance of
DQN in terms of average rally length was also deteriorated by the addition of
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these layers. On the other hand, MCC no longer demonstrated a significantly
superior performance in terms of % of aces by the addition of hidden layers
to the Paddle&Ball Position Input design. While some level of improve-
ment was detected in the DQN group with the Ball Position Input design
(specifically in the % of aces achieved) by the addition of the extra layers,
overall performance in all 3 metrics was still inferior to those of the biological
cultures in all the metrics. Specifically as illustrated in Extended Data Figure
B9, the HCC group still demonstrated significant outperformance compared
to the DQN Paddle&Ball Position Input and Ball Position Input
designs in terms of relative improvement. The relative improvement in both
of the Paddle&Ball Position Input and Ball Position Input designs
showed a decay compared to the results reported in the main text, where this
level of outperformance of MCC over DQN was not observed in the absence
of hidden layers.

The observed deteriorated performance in terms of relative improvement in
the Paddle&Ball Position Input design may be attributed to decreased
generalization capabilities and higher variance resulting from the introduction
of additional hidden layers. Because, for simpler tasks, a smaller network
with fewer hidden layers might be sufficient to achieve good performance, and
adding more layers could lead to overfitting. Thereby, this declined perfor-
mance in the relative improvement as well as the low dimensionality of the
input information in these designs combined with the faster computational
performance of the algorithm with fewer hidden layers can justify the use of
the shallower design for comparison reasons.

A.6 Network Construction

Recording neuronal spiking activities occurred across 1024 HD-MEA channels
during 285 Gameplay and 147 Rest sessions. Due to the extended duration of
recordings at a 20 kHz sampling frequency, the resulting time series for Game-
play sessions became notably lengthy. In the context of extracting information
from dense and high-dimensional networks, recent emphasis has centered on
acquiring network embeddings in lower dimensions. The primary goal of this
approach is to obtain vector representations for individual nodes within the
network, encapsulating valuable insights [34–36]. Therefore, in this study, we
initially employed dimensionality reduction algorithms to enhance computa-
tional efficiency for subsequent data analysis and improve data interpretability.
This approach also facilitated the revelation of latent data structures not
immediately evident in the original high-dimensional space. We utilized t-SNE
[38] to generate 2D representations for both Rest and Gameplay data.

Previous studies have extensively utilized simplified models of inter-
connected neural populations, employing mean-field approximations. These
models effectively retain the dynamic properties of the original neural network
while significantly accelerating simulation speeds by several orders of mag-
nitude [61–64]. Furthermore, in complex neural networks, only a fraction of
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neurons fire at any given time, and many do not exhibit clear action potentials.
Recent evidence highlights the emergence of specialized, selective, and abstract
response properties in the cortex [39], underscoring the significance of sparse
activity and connectivity patterns. These patterns conserve energy and opti-
mize computational capacity [40], emphasizing the redundancy in evaluating
individual neuron firing patterns. The brain’s capacity to encode and process
information depends on the concerted action of neuronal populations, often
conveying redundant or highly correlated signals. Given these collective behav-
iors observed in neuronal networks, our objective was to advance the reduction
of computational complexity when studying large neuronal populations while
still preserving the dynamic properties of the network.

We developed a methodology to identify a subset of recorded channels that
likely monitored neuronal populations specifically tuned to the ongoing task.
This subset facilitates the identification of key neurons that characterize the
network’s behavior during Gameplay, allowing for a more efficient study of the
macroscopic aspects of this smaller and interpretable network. To establish a
consistent subset of channels across all neuronal cultures, we employed Tucker
decomposition, utilizing higher-order orthogonal iteration, on the tensor data
derived from the 248 Gameplay sessions in the lower-dimensional embedding
space. The resulting 1024×3 tensor served as a concise representation, cap-
turing underlying patterns and structures. Using this tensor, we identified
representative channels by applying the K-medoid clustering algorithm, cre-
ating 30 clusters and extracting the corresponding ’medoids’ for each cluster.
Attempts with a higher value of K did not significantly improve clustering
accuracy, as measured by the Davies-Bouldin index. Subsequently, a network
matrix was constructed using functional connectivity, defined as zero-lag Pear-
son correlations, for each Gameplay or Rest session recording. The matrix had
these 30 channels as nodes, and the edges between them represented functional
connectivity. Only edges with Pearson correlation absolute values above 0.7
were retained.
Figure B10 is a schematic illustration of the proposed in vitro network
construction framework in this study.

A.7 Active Inference Agent

While RL algorithms use back-propagation, it has been argued that this
method is likely too inefficient to function within biological systems. Therefore,
we attempted to evaluate the sample efficiency of more biologically inspired
algorithms, by implementing a counterfactual learning active inference agent
[65, 66]. Our preliminary findings show that one can use a generic active infer-
ence agent which can then mimic the performance of the DishBrain system
depending on additional parameters such as memory.

The active inference framework is a formal way of modelling the behaviour
of self-organising systems that interface with the external world and maintain a
consistent form over time [67–69]. The framework assumes that agents embody
generative models of the environment they interact with, on which they base
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their behaviour [70, 71]. A recent active inference scheme is shown to be math-
ematically equivalent to a particular class of neural networks accompanied by
some neuromodulations of synaptic plasticity [65, 66]. It uses counterfactual
learning (CL) to accumulate a measure of risk over time based on feedback from
the environment. Subsequent work that validates this scheme experimentally
using in vitro neural networks has also appeared recently [72]. Of particular
note, the training schematic for the DishBrain system was inspired by impli-
cations from theory on active inference via the Free Energy Principle, making
it the most suitable algorithm to compare here [6]. Here, we focus on gener-
ative models in the form of Partially Observable Markov Decision Processes
(POMDPs) for their simplicity and ubiquitous use in the optimal control lit-
erature [73–75].
Gameplay performance of these agents with two different memory horizons of
3 (CL(3)) and 7 (CL(7)) is summarised in Figure B11. We see that the CL(7)
agents perform at par and in some cases better than the HCC group and are
the only group where the HCC has no significant outperformance over them
in terms of the relative improvement in time (see Figure B11.h). However, this
is not the case for CL(3) agents which have a smaller memory horizon. While
further exploring this active inference framework is out of scope for this paper,
it does highlight the value of using biologically inspired algorithms in terms of
sample efficiency.
Generative model of the pong game environment:
Assuming agents have a discrete representation of their surrounding environ-
ment, we turn to the POMDP framework [75]. POMDPs offer a fairly expres-
sive structure to model discrete state-space environments where parameters
can be expressed as tractable categorical distributions. The POMDP-based
generative model can be formally defined as a tuple of finite sets (S,O,U,B,A):

In a POMDP, the hidden states (s) generate observations (o) through the
likelihood mapping (A) in the form of a categorical distribution, P (oτ |sτ ) =
Cat(A × sτ ). B is a collection of square matrices Bu, where Bu represents
transition dynamics P (st|st−1, ut−1 = u): The transition matrix (B) deter-
mines the dynamics of s given the agent’s action u as P (st|st−1, ut−1) =
Cat(But−1

× st−1). In [A× sτ ] and [Buτ
× sτ ], sτ is represented as a one-hot

vector that is multiplied through regular matrix multiplication 2. The Marko-
vianity of POMDPs means that state transitions are independent of history
(i.e. state st only depends upon the state-action pair (st−1, ut−1) and not
st−2, ut−2 etc.).

The generative model can be summarised as follows,

P (o1:t, s1:t, u1:t) = P (A)P (B)P (D)P (E)
t∏

τ=1

P (oτ |sτ ,A)
t∏

τ=2

P (sτ |sτ−1, uτ−1,B).

(A1)

2One-hot is a group of bits among which the legal combinations of values are only those with
a single high (1) bit and all the others low (0). Here, the bit (1) is allocated to the state s = sτ
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So, from the agent’s perspective, when encountering a stream of observations
in time, such as (o1, o2, o3, ..., ot), as a consequence of performing a stream of
actions (u1, u2, u3, ..., ut−1), the generative model quantitatively couples and
quantifies the causal relationship from action to observation through some
assumed hidden states of the environment. These are called ‘hidden’ states
because, in POMDPs, the agent cannot observe them directly. Based on this
representation, an agent can now attempt to optimise its actions to keep receiv-
ing preferred observations.
The generative model structure used explicitly for the pong game environment
is summarised below:

• x−axis location of the ball: Communicated to DishBrain using a
stimulation between 4-40 HZ, i.e. 37 states.

• y−axis location of the ball: Communicated to DishBrain through 8
sensory electrodes, i.e. 8 states.

• y−axis location of the paddle: Assumed to be part of DishBrain’s
generative model as control is exerted, i.e. 8 states.

• Structure: State Space = 37∗8∗8 states, Action Space = {Up, Down, Stay}

Counterfactual learning algorithm:
In the counterfactual variant of active inference, the agent learns a state-action
mapping CP. For the exact form of the generative model and free energy, refer
to [65]. This state-action mapping is learned using a ’Risk’ parameter Γ(t)
using the update equation as given in [65] as:

CP ← CP + t ⟨(1− 2 Γ(t))⟨ut ⊗ st−1⟩⟩. (A2)

Here, ⟨·⟩ refers to the average over time, and ⊗ is the Kronecker-product
operator. Given the state-action mapping CP , agent samples actions from the
distribution,

P (u|s)CL = σ (ln CP · st−1) . (A3)

For the complete model, refer to [65]. The free parameter in our model is
the number of past instances (of state-action pairs) the agent stores in memory
use in every time-step to learn CP in Eq.A2. In the article, we use active
inference agents with memory horizons of 3 and 7.

The functional form of Γ(t) used in the simulations of this work is:

Γ(t)prior = 0.55 (A4)

The value of 0.55 corresponds to a bias of “higher risk” in the CL method.
An initial value greater than 0.5 is necessary to enable learning. For updating
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Γ, we use the equation,

Γ(t)← Γ(t)− 1

Tgoal − t
. (A5)

Here, Tgoal is when the agent reached the goal state (received a positive
reward from the environment). So, the sooner the agent reaches the goal
state, the quicker the Γ(t), i.e., risk converges to zero. All the update rules
defined in the paper can be derived from the postulate that the agent tries to
minimise the (variational) free energy w.r.t the generative model [65, 76].
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2 Extended Data
a)

b)

Fig. B1 DishBrain software schematics. a) Software components and data flow in the
DishBrain closed loop system. Voltage samples flow from the MEA to the ‘Pong’ environ-
ment, and sensory information flows from the ‘Pong’ environment back to the MEA, forming
a closed loop. The blue rectangles mark proprietary pieces of hardware fromMaxWell, includ-
ing the MEA well which may contain a live culture of neurons. The green MXWServer is a
piece of software provided by MaxWell which is used to configure the MEA and Hub, using
a private API directly over the network. The red rectangles mark components of the ‘Dish-
Server’ program, a high-performance program consisting of four components designed to run
asynchronously, despite being run on a single CPU thread. The ‘LAN Interface’ component
stores the network state, for talking to the Hub, and produces arrays of voltage values for
processing. Voltage values are passed to the ‘Spike Detection’ component, which stores feed-
back values and spike counts, and passes recalibration commands back to the LAN Interface.
When the pong environment is ready to run, it updates the state of the paddle based on
the spike counts, updates the state of the ball based on its velocity and collision conditions,
and re-configures the stimulation sequencer based on the relative position of the ball and
current state of the game. The stimulation sequencer stores and updates indices and count-
downs relating to the stimulations it must produce and converts these into commands each
time the corresponding countdown reaches zero, which are finally passed back to the LAN
Interface, to send to the MEA system, closing the loop. The procedures associated with each
component are run one after the other in a simple loop control flow, but the ‘Pong’ environ-
ment only moves forward every 200th update, short-circuiting otherwise. Additionally, up
to three worker processes are launched in parallel, depending on which parts of the system
need to be recorded. They receive data from the main thread via shared memory and write
it to file, allowing the main thread to continue processing data without having to hand con-
trol to the operating system and back again. b) Numeric operations in the real-time spike
detection component of the DishBrain closed loop system, including multiple IIR filters.
Running a virtual environment in a closed loop imposes strict performance requirements,
and digital signal processing is the main bottleneck of this system, with close to 42 MB of
data to process every second. Simple sequences of IIR digital filters are applied to incoming
data, storing multiple arrays of 1024 feedback values in between each sample. First, spikes
on the incoming data are detected by applying a high pass filter to determine the deviation
of the activity and comparing that to the MAD, which is itself calculated with a subsequent
low pass filter. Then, a low pass filter is applied to the original data to determine whether
the MEA hardware needs to be re-calibrated, affecting future samples. This system was able
to keep up with the incoming data on a single thread of an Intel Core i7-8809G. Figures
adapted from [6].
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Fig. B2 Hyper-parameter exploration of RL algorithms. The changes in average
hits-per-rally for each RL algorithm in several sample points of the grid search space. a)
Effects of changing the learning rate on DQN performance. replay buffer size = 10000 and
batch size = 32; b) Effects of changing the replay buffer size on DQN performance. learning
rate = 0.0001 and batch size = 32; c) Effects of changing the batch size on DQN performance.
learning rate = 0.0001 and replay buffer size = 10000; d) Effects of changing the actor
learning rate on A2C performance. critic learning rate = 0.001 and batch size = 32; e) Effects
of changing the critic learning rate on A2C performance. actor learning rate = 0.0001 and
batch size = 32; f) Effects of changing the batch size on A2C performance. actor learning
rate = 0.0001 and critic learning rate = 0.001; g) Effects of changing the actor learning rate
on PPO performance. critic learning rate = 0.001 and batch size = 32; h) Effects of changing
the critic learning rate on PPO performance. actor learning rate = 0.0001 and batch size =
32; i) Effects of changing the batch size on PPO performance. actor learning rate = 0.0001
and critic learning rate = 0.001.
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Fig. B3 Image Input to DQN - Effects of changing the batch size. The Average
number of a) hits-per-rally, b) % of aces, and c) % of long rallies over 20 minutes real-
time equivalent of training DQN with batch sizes 8, 16, 32, 64, compared to the MCC and
HCC cultures. d) average rally length over time, e) Average % of aces within groups and
over time. f) Average % of long-rallies (≥ 3) performed in a session. g,h and i) Pairwise
Tukey’s post-hoc test. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and the black triangle marks the mean. Error
bands = 1 SE.



Springer Nature 2021 LATEX template

46 Biological Neurons vs Deep Reinforcement Learning
A2C

c)b)

g) i)

f)

a)

h)

***
***

]

]

] ]* ***

e)d) ]***

]***

Fig. B4 Image Input to A2C - Effects of changing the batch size. The Average
number of a) hits-per-rally, b) % of aces, and c) % of long rallies over 20 minutes real-
time equivalent of training A2C with batch sizes 8, 16, 32, 64, compared to the MCC and
HCC cultures. d) average rally length over time, e) Average % of aces within groups and
over time. f) Average % of long-rallies (≥ 3) performed in a session. g,h and i) Pairwise
Tukey’s post-hoc test. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and the black triangle marks the mean. Error
bands = 1 SE.
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Fig. B5 Image Input to PPO - Effects of changing the batch size. The Average
number of a) hits-per-rally, b) % of aces, and c) % of long rallies over 20 minutes real-
time equivalent of training PPO with batch sizes 8, 16, 32, 64, compared to the MCC and
HCC cultures. d) average rally length over time, e) Average % of aces within groups and
over time. f) Average % of long-rallies (≥ 3) performed in a session. g,h and i) Pairwise
Tukey’s post-hoc test. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and the black triangle marks the mean. Error
bands = 1 SE.

a) b) c)

Fig. B6 Relative improvement over time for various batch sizes of the RL algo-
rithms. Relative improvement (%) in the average hit counts between the first 5 minutes
and the last 15 minutes of all sessions as well as the post-hoc tests in each separate group
for batch sizes of 8, 16, 32, and 64 in the a) DQN, b) A2C, and c) PPO groups compared
to biological cultures.
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Fig. B7 Extended training episodes for the deep RL algorithms. Training the
implemented deep RL algorithms for 11000 game episodes using the same set of hyper-
parameters as in the main paper illustrates the increasing trend in their performance and
high levels of total reward (i.e. episode duration) achieved. The plots show a moving average
of the total episode reward with a window size of 100.



Springer Nature 2021 LATEX template

Biological Neurons vs Deep Reinforcement Learning 49

Paddle&
Ball Position – H

idden Layers

c)b)

g) i)

f)

a)

***]

***]

**]] ]* ***

]***

]*** e)d)

h)

Ball Position – H
idden Layers

c)b)

f)h)

e) f)

a)

d) ]***

]***

g) i)

] ]* ***
* ]

***
***

]

]

**]

j) k) l)

m) n) o)

p) q) r)

Fig. B8 Additional hidden layers in the DQN algorithm. Ball Position Input
to the RL Algorithms: The average number of a) hits-per-rally, b) % of aces, and c) %
of long rallies over 20 minutes real-time equivalent of training DQN (2 additional hidden
layers, batch size = 32), A2C, PPO, and MCC, HCC cultures. d) average rally length over
time, e) Average % of aces within groups and over time. f) Average % of long-rallies (≥ 3)
performed in a session. g,h and i) Pairwise Tukey’s post-hoc test. Paddle&Ball Position
Input to the RL Algorithms: The average number of j) hits-per-rally, k) % of aces, and l)
% of long rallies over 20 minutes real-time equivalent of training DQN (2 additional hidden
layers, batch size = 32), A2C, PPO, and MCC, HCC cultures. m) average rally length
over time, n) Average % of aces within groups and over time. o) Average % of long-rallies
(≥ 3) performed in a session. p,q and r) Pairwise Tukey’s post hoc test. Box plots show
interquartile range, with bars demonstrating 1.5X interquartile range, the line marks the
median and the black triangle marks the mean. Error bands = 1 SE.
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a) b)

Fig. B9 Relative improvement over time with additional hidden layers in DQN
algorithm. Relative improvement (%) in the average hit counts between the first 5 minutes
and the last 15 minutes of all sessions in each separate group for a) Ball Position Input
design for DQN with 2 additional hidden layers, b) Paddle&Ball Position Input design
for DQN with 2 additional hidden layers.
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Fig. B10 A schematic illustration of the overall network construction framework. The spik-
ing time series data are first transformed into a 3D space using t-SNE embedding. These
lower-dimensional representations are then combined into a tensor, which is decomposed
using Tucker decomposition. The K-medoids algorithm is then applied to identify consis-
tent representative channels across all cultures. These channels become network nodes, and
pairwise Pearson correlation values serve as edge weights. The network layout reflects the
physical placement of channels on the MEA, with node colors distinguishing sensory (green)
from motor (blue) regions.
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Fig. B11 Comparing Active Inference agent with biological neurons. a) Average
rally length over time where this within-group increase was significant for all groups except
CL(3) (One-way ANOVA test, p = 5.854e-6, p = 7.936-17, p = 0.873, and p = 2.254e-6, for
MCC, HCC, CL(3), and CL(7) respectively). b) Average % of aces within groups and over
time where this within-group increase was significant only for HCC, MCC, and CL(7) groups
(One-way ANOVA test, p = 0.014, p = 2.907e-08, p = 0.380, and p = 0.016, for MCC, HCC,
CL(3), and CL(7) respectively). c) Average % of long-rallies (≥ 3) performed in a session
where the increase over time was significant for all groups except CL(3) (One-way ANOVA
test, p = 1.172e-7, p = 1.525e-24, p = 0.253, and p = 8.944e-4 for MCC, HCC, CL(3), and
CL(7), respectively). d Relative improvement (%) in the average hit counts between the
first 5 minutes and the last 15 minutes of all sessions in each separate group. e,f,g and h)
Pairwise post hoc tests. Box plots show interquartile range, with bars demonstrating 1.5X
interquartile range, the line marks the median and the black triangle marks the mean. Error
bands = 1 SE.
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Table S2. Follow up main and supplementary text post-hoc tests for multivariate tests, including means, standard error (SE), t-
scores, degree of freedom and exact p-values with hedges. 

 
Figure Pan

el  
Parameters Sourc

e 
A B Mean 

(A) 
Mean 

(B) 
diff se T p-val hedge

s 
Method 

1 g Hit Counts 0-5 
Minute
s 

A2C DQN 0.705 0.709 -0.004 0.027 -0.147 0.900 -0.008 Tukey’s 

A2C HCC 0.705 0.651 0.055 0.025 2.151 0.199 0.110 
A2C MCC 0.705 0.716 -0.011 0.029 -0.373 0.900 -0.021 
A2C PPO 0.705 0.716 -0.011 0.029 -0.388 0.900 -0.022 

DQN HCC 0.709 0.651 0.059 0.025 2.310 0.142 0.117 
DQN MCC 0.709 0.716 -0.007 0.029 -0.237 0.900 -0.014 
DQN PPO 0.709 0.716 -0.007 0.029 -0.251 0.900 -0.014 
HCC MCC 0.651 0.716 -0.065 0.027 -2.386 0.120 -0.131 
HCC PPO 0.651 0.716 -0.066 0.027 -2.410 0.113 -0.132 
MCC PPO 0.716 0.716 -0.000 0.030 -0.013 0.900 -0.001 

6-20 
Minute
s 
      

A2C DQN 0.738 0.738 0.000 0.018 0.004 0.900 0.000 
A2C HCC 0.738 0.854 -0.117 0.017 -6.726 0.001 -0.198 
A2C MCC 0.738 0.852 -0.115 0.020 -5.715 0.001 -0.194 
A2C PPO 0.738 0.709 0.029 0.019 1.506 0.551 0.049 

DQN HCC 0.738 0.854 -0.117 0.017 -6.737 0.001 -0.198 
DQN MCC 0.738 0.852 -0.115 0.020 -5.723 0.001 -0.194 
DQN PPO 0.738 0.709 0.029 0.019 1.503 0.552 0.049 
HCC MCC 0.854 0.852 0.002 0.020 0.101 0.900 0.003 
HCC PPO 0.854 0.709 0.146 0.019 7.818 0.001 0.246 
MCC PPO 0.852 0.709 0.144 0.021 6.778 0.001 0.243 

h % Aces 0-5 
Minute
s 

A2C DQN 51.842 52.190 -0.347 1.425 -0.244 0.900 -0.028 Tukey’s 
 
 A2C HCC 51.842 54.382 -2.539 1.375 -1.847 0.348 -0.205 

A2C MCC 51.842 53.333 -1.490 1.549 -0.962 0.859 -0.120 
A2C PPO 51.842 54.731 -2.889 1.425 -2.028 0.254 -0.234 

DQN HCC 52.190 54.382 -2.192 1.375 -1.595 0.501 -0.177 
DQN MCC 52.190 53.333 -1.143 1.549 -0.738 0.900 -0.092 
DQN PPO 52.190 54.731 -2.542 1.425 -1.784 0.385 -0.205 
HCC MCC 54.382 53.333 1.049 1.503 0.698 0.900 0.085 
HCC PPO 54.382 54.731 -0.350 1.375 -0.254 0.900 -0.028 
MCC PPO 53.333 54.731 -1.399 1.549 -0.903 0.893 -0.113 

6-20 
Minute
s 
      
 

A2C DQN 50.284 50.136 0.148 0.946 0.157 0.900 0.018 

A2C HCC 50.284 49.259 1.025 0.912 1.123 0.768 0.125 
A2C MCC 50.284 50.232 0.052 1.028 0.051 0.900 0.006 
A2C PPO 50.284 53.254 -2.970 0.946 -3.141 0.015 -0.362 

DQN HCC 50.136 49.259 0.877 0.912 0.961 0.860 0.107 
DQN MCC 50.136 50.232 -0.096 1.028 -0.093 0.900 -0.012 
DQN PPO 50.136 53.254 -3.118 0.946 -3.298 0.009 -0.380 
HCC MCC 49.259 50.232 -0.973 0.998 -0.975 0.852 -0.118 
HCC PPO 49.259 53.254 -3.995 0.912 -4.378 0.001 -0.487 
MCC PPO 50.232 53.254 -3.022 1.028 -2.940 0.028 -0.368 
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i % Long Rally 0-5 
Minute
s 

A2C DQN 7.421 9.789 -2.368 0.913 -2.594 0.073 -0.299 Tukey’s 
 

A2C HCC 7.421 4.523 2.898 0.881 3.290 0.009 0.366 
A2C MCC 7.421 7.318 0.103 0.993 0.103 0.900 0.013 
A2C PPO 7.421 8.122 -0.701 0.913 -0.767 0.900 -0.088 

DQN HCC 9.789 4.523 5.267 0.881 5.978 0.001 0.665 
DQN MCC 9.789 7.318 2.471 0.993 2.489 0.094 0.312 
DQN PPO 9.789 8.122 1.667 0.913 1.826 0.360 0.210 
HCC MCC 4.523 7.318 -2.796 0.963 -2.903 0.031 -0.353 
HCC PPO 4.523 8.122 -3.599 0.881 -4.085 0.001 -0.454 
MCC PPO 7.318 8.122 -0.803 0.993 -0.809 0.900 -0.101 

6-20 
Minute
s 
      

A2C DQN 10.034 10.248 -0.214 0.623 -0.344 0.900 -0.040 
A2C HCC 10.034 10.365 -0.331 0.601 -0.550 0.900 -0.061 
A2C MCC 10.034 11.972 -1.938 0.677 -2.863 0.035 -0.358 
A2C PPO 10.034 8.506 1.528 0.623 2.454 0.102 0.283 

DQN HCC 10.248 10.365 -0.116 0.601 -0.194 0.900 -0.022 

DQN MCC 10.248 11.972 -1.724 0.677 -2.547 0.082 -0.319 
DQN PPO 10.248 8.506 1.743 0.623 2.798 0.042 0.322 
HCC MCC 10.365 11.972 -1.608 0.657 -2.447 0.104 -0.297 
HCC PPO 10.365 8.506 1.859 0.601 3.094 0.017 0.344 
MCC PPO 11.972 8.506 3.467 0.677 5.121 0.001 0.641 

2 g Hit Counts 0-5 
Minute
s 

A2C DQN 0.722 0.713 0.009 0.027 0.325 0.900 0.017 Tukey’s 

A2C HCC 0.722 0.651 0.072 0.026 2.761 0.046 0.141 
A2C MCC 0.722 0.716 0.006 0.029 0.216 0.900 0.012 
A2C PPO 0.722 0.740 -0.018 0.027 -0.641 0.900 -0.035 

DQN HCC 0.713 0.651 0.063 0.026 2.428 0.108 0.123 
DQN MCC 0.713 0.716 -0.003 0.029 -0.087 0.900 -0.005 

DQN PPO 0.713 0.740 -0.026 0.027 -0.968 0.856 -0.052 
HCC MCC 0.651 0.716 -0.065 0.028 -2.335 0.134 -0.128 
HCC PPO 0.651 0.740 -0.089 0.026 -3.428 0.006 -0.175 
MCC PPO 0.716 0.740 -0.024 0.029 -0.815 0.900 -0.047 

6-20 
Minute
s 
      

A2C DQN 0.724 0.716 0.008 0.018 0.415 0.900 0.013 
A2C HCC 0.724 0.854 -0.131 0.018 -7.461 0.001 -0.220 
A2C MCC 0.724 0.852 -0.129 0.020 -6.354 0.001 -0.216 
A2C PPO 0.724 0.727 -0.004 0.018 -0.217 0.900 -0.007 

DQN HCC 0.716 0.854 -0.138 0.017 -7.918 0.001 -0.232 
DQN MCC 0.716 0.852 -0.136 0.020 -6.743 0.001 -0.229 
DQN PPO 0.716 0.727 -0.011 0.018 -0.633 0.900 -0.019 

HCC MCC 0.854 0.852 0.002 0.020 0.100 0.900 0.003 
HCC PPO 0.854 0.727 0.127 0.018 7.233 0.001 0.213 
MCC PPO 0.852 0.727 0.125 0.020 6.158 0.001 0.210 

h % Aces 0-5 
Minute
s 

A2C DQN 51.318 54.016 -2.698 1.469 -1.837 0.354 -0.212 Tukey’s 

A2C HCC 51.318 54.382 -3.064 1.417 -2.162 0.196 -0.240 
A2C MCC 51.318 53.333 -2.014 1.597 -1.262 0.690 -0.158 
A2C PPO 51.318 50.866 0.453 1.469 0.308 0.900 0.035 

DQN HCC 54.016 54.382 -0.366 1.417 -0.258 0.900 -0.029 
DQN MCC 54.016 53.333 0.683 1.597 0.428 0.900 0.054 
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DQN PPO 54.016 50.866 3.150 1.469 2.145 0.202 0.247 
HCC MCC 54.382 53.333 1.049 1.550 0.677 0.900 0.082 
HCC PPO 54.382 50.866 3.516 1.417 2.481 0.096 0.276 
MCC PPO 53.333 50.866 2.467 1.597 1.545 0.529 0.193 

6-20 
Minute
s 
      

A2C DQN 52.596 53.001 -0.404 0.919 -0.440 0.900 -0.051 
A2C HCC 52.596 49.259 3.337 0.887 3.762 0.002 0.418 
A2C MCC 52.596 50.232 2.364 0.999 2.366 0.126 0.296 
A2C PPO 52.596 51.658 0.938 0.919 1.020 0.826 0.118 

DQN HCC 53.001 49.259 3.741 0.887 4.218 0.001 0.469 
DQN MCC 53.001 50.232 2.769 0.999 2.771 0.045 0.347 
DQN PPO 53.001 51.658 1.342 0.919 1.460 0.577 0.168 
HCC MCC 49.259 50.232 -0.973 0.970 -1.003 0.836 -0.122 
HCC PPO 49.259 51.658 -2.399 0.887 -2.705 0.054 -0.301 
MCC PPO 50.232 51.658 -1.427 0.999 -1.428 0.595 -0.179 

i % Long Rally 0-5 
Minute
s 

A2C DQN 9.519 10.105 -0.586 0.990 -0.591 0.900 -0.068  
Tukey’s A2C HCC 9.519 4.523 4.997 0.955 5.230 0.001 0.581 

A2C MCC 9.519 7.318 2.201 1.076 2.045 0.246 0.256 
A2C PPO 9.519 10.462 -0.942 0.990 -0.952 0.865 -0.110 

DQN HCC 10.105 4.523 5.582 0.955 5.843 0.001 0.650 
DQN MCC 10.105 7.318 2.787 1.076 2.589 0.074 0.324 
DQN PPO 10.105 10.462 -0.357 0.990 -0.360 0.900 -0.042 
HCC MCC 4.523 7.318 -2.796 1.044 -2.677 0.059 -0.325 
HCC PPO 4.523 10.462 -5.939 0.955 -6.217 0.001 -0.691 
MCC PPO 7.318 10.462 -3.144 1.076 -2.921 0.030 -0.366 

6-20 
Minute
s 
      

A2C DQN 10.431 11.238 -0.807 0.616 -1.311 0.661 -0.151 
A2C HCC 10.431 10.365 0.066 0.594 0.111 0.900 0.012 

A2C MCC 10.431 11.972 -1.541 0.669 -2.303 0.145 -0.288 
A2C PPO 10.431 10.049 0.382 0.616 0.620 0.900 0.071 

DQN HCC 11.238 10.365 0.873 0.594 1.470 0.571 0.163 
DQN MCC 11.238 11.972 -0.734 0.669 -1.097 0.783 -0.137 
DQN PPO 11.238 10.049 1.189 0.616 1.931 0.302 0.222 
HCC MCC 10.365 11.972 -1.608 0.649 -2.475 0.097 -0.301 
HCC PPO 10.365 10.049 0.316 0.594 0.531 0.900 0.059 
MCC PPO 11.972 10.049 1.923 0.669 2.873 0.034 0.360 

3 g Hit Counts 0-5 
Minute
s 

A2C DQN 0.771 0.687 0.084 0.028 2.980 0.024 0.159 Tukey’s 

A2C HCC 0.771 0.651 0.121 0.027 4.507 0.001 0.229 
A2C MCC 0.771 0.716 0.055 0.030 1.826 0.359 0.105 
A2C PPO 0.771 0.698 0.073 0.028 2.593 0.072 0.139 

DQN HCC 0.687 0.651 0.037 0.027 1.371 0.628 0.070 
DQN MCC 0.687 0.716 -0.029 0.030 -0.951 0.866 -0.055 
DQN PPO 0.687 0.698 -0.011 0.028 -0.375 0.900 -0.020 
HCC MCC 0.651 0.716 -0.065 0.029 -2.262 0.158 -0.124 
HCC PPO 0.651 0.698 -0.047 0.027 -1.759 0.399 -0.090 
MCC PPO 0.716 0.698 0.018 0.030 0.598 0.900 0.034 

6-20 
Minute
s 

 
A2C 

 
DQN 

0.777 0.687 0.090 0.018 4.982 0.001 0.150 

A2C HCC 0.777 0.854 -0.077 0.018 -4.348 0.001 -0.128 
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      A2C MCC 0.777 0.852 -0.075 0.020 -3.662 0.002 -0.125 
A2C PPO 0.777 0.712 0.065 0.018 3.576 0.003 0.108 

DQN HCC 0.687 0.854 -0.167 0.018 -9.521 0.001 -0.278 
DQN MCC 0.687 0.852 -0.165 0.020 -8.119 0.001 -0.275 
DQN PPO 0.687 0.712 -0.025 0.018 -1.389 0.617 -0.042 
HCC MCC 0.854 0.852 0.002 0.020 0.099 0.900 0.003 
HCC PPO 0.854 0.712 0.142 0.018 8.044 0.001 0.236 
MCC PPO 0.852 0.712 0.140 0.020 6.854 0.001 0.233 

h % Aces 0-5 
Minute
s 

A2C DQN 53.293 55.443 -2.150 1.473 -1.459 0.577 -0.168 Tukey’s 

A2C HCC 53.293 54.382 -1.089 1.422 -0.766 0.900 -0.085 
A2C MCC 53.293 53.333 -0.040 1.602 -0.025 0.900 -0.003 
A2C PPO 53.293 54.248 -0.956 1.473 -0.649 0.900 -0.075 

DQN HCC 55.443 54.382 1.061 1.422 0.746 0.900 0.083 
DQN MCC 55.443 53.333 2.110 1.602 1.317 0.658 0.165 
DQN PPO 55.443 54.248 1.194 1.473 0.811 0.900 0.093 

HCC MCC 54.382 53.333 1.049 1.554 0.675 0.900 0.082 
HCC PPO 54.382 54.248 0.133 1.422 0.094 0.900 0.010 
MCC PPO 53.333 54.248 -0.916 1.602 -0.572 0.900 -0.072 

6-20 
Minute
s 
      

A2C DQN 52.530 53.879 -1.349 0.966 -1.397 0.613 -0.161 
A2C HCC 52.530 49.259 3.270 0.932 3.508 0.004 0.390 
A2C MCC 52.530 50.232 2.298 1.050 2.188 0.185 0.274 
A2C PPO 52.530 52.511 0.018 0.966 0.019 0.900 0.002 

DQN HCC 53.879 49.259 4.620 0.932 4.955 0.001 0.551 
DQN MCC 53.879 50.232 3.647 1.050 3.472 0.005 0.435 
DQN PPO 53.879 52.511 1.368 0.966 1.415 0.602 0.163 
HCC MCC 49.259 50.232 -0.973 1.019 -0.954 0.864 -0.116 

HCC PPO 49.259 52.511 -3.252 0.932 -3.488 0.005 -0.388 
MCC PPO 50.232 52.511 -2.280 1.050 -2.170 0.192 -0.272 

 
i 
 

 
% Long Rally 

 
0-5 
Minute
s 

 
A2C 

 
DQN 

9.810 9.554 0.256 0.935 0.274 0.900 0.032  
Tukey’s 

A2C HCC 9.810 4.523 5.288 0.902 5.861 0.001 0.652 
A2C MCC 9.810 7.318 2.492 1.016 2.452 0.103 0.307 
A2C PPO 9.810 9.403 0.408 0.935 0.436 0.900 0.050 

DQN HCC 9.554 4.523 5.032 0.902 5.577 0.001 0.620 
DQN MCC 9.554 7.318 2.236 1.016 2.200 0.181 0.275 
DQN PPO 9.554 9.403 0.151 0.935 0.162 0.900 0.019 
HCC MCC 4.523 7.318 -2.796 0.986 -2.834 0.038 -0.344 
HCC PPO 4.523 9.403 -4.880 0.902 -5.410 0.001 -0.601 

MCC PPO 7.318 9.403 -2.085 1.016 -2.051 0.243 -0.257 
6-20 
Minute
s 
      

A2C DQN 12.722 9.511 3.211 0.632 5.083 0.001 0.585 
A2C HCC 12.722 10.365 2.357 0.610 3.868 0.001 0.430 
A2C MCC 12.722 11.972 0.750 0.687 1.092 0.786 0.137 
A2C PPO 12.722 10.183 2.540 0.632 4.020 0.001 0.463 

DQN HCC 9.511 10.365 -0.854 0.610 -1.401 0.611 -0.156 
DQN MCC 9.511 11.972 -2.461 0.687 -3.584 0.003 -0.449 
DQN PPO 9.511 10.183 -0.672 0.632 -1.063 0.802 -0.122 
HCC MCC 10.365 11.972 -1.608 0.666 -2.412 0.113 -0.293 
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HCC PPO 10.365 10.183 0.182 0.610 0.299 0.900 0.033 
MCC PPO 11.972 10.183 1.790 0.687 2.606 0.070 0.326 

4 a Average 
Paddle 
Movement 

 A2C DQN 71606.1
54 

75257.4
36 

-
3651.

282 

4997.
725 

-0.731 0.900 -0.164 Tukey’s 

A2C HCC 71606.1
54 

52000.4
27 

19605
.727 

3783.
228 

5.182 0.001 0.886 

A2C MCC 71606.1
54 

50007.5
04 

21598
.650 

4190.
720 

5.154 0.001 0.973 

A2C PPO 71606.1
54 

72712.5
00 

-
1106.

346 

4966.
391 

-0.223 0.900 -0.050 

DQN HCC 75257.4
36 

52000.4
27 

23257
.009 

3783.
228 

6.147 0.001 1.051 

DQN MCC 75257.4
36 

50007.5
04 

25249
.932 

4190.
720 

6.025 0.001 1.138 

DQN PPO 75257.4
36 

72712.5
00 

2544.
936 

4966.
391 

0.512 0.900 0.114 

HCC MCC 52000.4
27 

50007.5
04 

1992.
923 

2626.
345 

0.759 0.900 0.090 

HCC PPO 52000.4
27 

72712.5
00 

-
20712

.073 

3741.
737 

-5.535 0.001 -0.936 

MCC PPO 50007.5
04 

72712.5
00 

-
22704

.996 

4153.
302 

-5.467 0.001 -1.023 

b Relative 
improvement 
(%) in the 
average hit 
counts 

 A2C DQN 29.919 24.634 5.285 7.934 288.9
57 

0.900 0.077 Games 
Howell 

 A2C HCC 29.919 82.147 -
52.22

7 

9.623 316.9
74 

0.001 -0.603 

A2C MCC 29.919 50.755 -
20.83

6 

9.830 223.4
64 

0.215 -0.265 

A2C PPO 29.919 21.602 8.318 7.665 279.0
06 

0.789 0.125 

DQN HCC 24.634 82.147 -
57.51

2 

9.026 296.9
59 

0.001 -0.708 

DQN MCC 24.634 50.755 -
26.12

1 

9.246 197.1
21 

0.041 -0.354 

DQN PPO 24.634 21.602 3.033 6.900 295.7
06 

0.900 0.051 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.030 0.355 

HCC PPO 82.147 21.602 60.54
5 

8.791 284.2
14 

0.001 0.766 

MCC PPO 50.755 21.602 29.15
4 

9.016 184.9
40 

0.012 0.405 

c Average 
Paddle 
Movement 
 

 A2C DQN 78719.2
50 

83859.0
00 

-
5139.

750 

4264.
838 

-1.205 0.722 -0.267 Tukey’s 
 

A2C HCC 78719.2
50 

52000.4
27 

26718
.823 

3233.
710 

8.263 0.001 1.397 

A2C MCC 78719.2
50 

50007.5
04 

28711
.746 

3589.
396 

7.999 0.001 1.497 

A2C PPO 78719.2
50 

75665.5
00 

3053.
750 

4264.
838 

0.716 0.900 0.159 

DQN HCC 83859.0
00 

52000.4
27 

31858
.573 

3233.
710 

9.852 0.001 1.666 

DQN MCC 83859.0
00 

50007.5
04 

33851
.496 

3589.
396 

9.431 0.001 1.765 

DQN PPO 83859.0
00 

75665.5
00 

8193.
500 

4264.
838 

1.921 0.307 0.425 

HCC MCC 52000.4
27 

50007.5
04 

1992.
923 

2269.
758 

0.878 0.900 0.104 

Springer Nature 2021 LATEX template

Biological Neurons vs Deep Reinforcement Learning 57



   
 

 

HCC PPO 52000.4
27 

75665.5
00 

-
23665

.073 

3233.
710 

-7.318 0.001 -1.238 

MCC PPO 50007.5
04 

75665.5
00 

-
25657

.996 

3589.
396 

-7.148 0.001 -1.338 

d Relative 
improvement 
(%) in the 
average hit 
counts-
Paddle&Ball 
Position Input 
 

 
 

A2C DQN 21.717 36.623 -
14.90

6 

10.28
6 

245.4
47 

0.584 -0.167 Games 
Howell 

 

A2C HCC 21.717 82.147 -
60.42

9 

9.165 303.1
51 

0.001 -0.733 

A2C MCC 21.717 50.755 -
29.03

8 

9.381 203.8
60 

0.019 -0.387 

A2C PPO 21.717 14.690 7.027 7.082 292.7
73 

0.842 0.114 

DQN HCC 36.623 82.147 -
45.52

3 

11.53
1 

304.5
65 

0.001 -0.439 

DQN MCC 36.623 50.755 -
14.13

2 

11.70
3 

257.8
34 

0.720 -0.151 

DQN PPO 36.623 14.690 21.93
3 

9.955 226.5
46 

0.182 0.254 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.030 0.355 

HCC PPO 82.147 14.690 67.45
6 

8.792 284.2
59 

0.001 0.853 

MCC PPO 50.755 14.690 36.06
5 

9.017 184.9
81 

0.001 0.501 

e Average 
Paddle 
Movement 
 

 A2C DQN 67718.7
50 

75019.2
50 

-
7300.

500 

4333.
263 

-1.685 0.446 -0.373 Tukey’s 
 

A2C HCC 67718.7
50 

52000.4
27 

15718
.323 

3285.
592 

4.784 0.001 0.809 

A2C MCC 67718.7
50 

50007.5
04 

17711
.246 

3646.
984 

4.856 0.001 0.909 

A2C PPO 67718.7
50 

73952.2
50 

-
6233.

500 

4333.
263 

-1.439 0.589 -0.319 

DQN HCC 75019.2
50 

52000.4
27 

23018
.823 

3285.
592 

7.006 0.001 1.185 

DQN MCC 75019.2
50 

50007.5
04 

25011
.746 

3646.
984 

6.858 0.001 1.283 

DQN PPO 75019.2
50 

73952.2
50 

1067.
000 

4333.
263 

0.246 0.900 0.055 

HCC MCC 52000.4
27 

50007.5
04 

1992.
923 

2306.
174 

0.864 0.900 0.103 

HCC PPO 52000.4
27 

73952.2
50 

-
21951

.823 

3285.
592 

-6.681 0.001 -1.130 

MCC PPO 50007.5
04 

73952.2
50 

-
23944

.746 

3646.
984 

-6.566 0.001 -1.229 

f Relative 
improvement 
(%) in the 
average hit 
counts- Ball 
Poistion Input 
 

 A2C DQN 33.724 29.397 4.327 9.789 297.5
13 

0.900 0.051 Games 
Howell 

 A2C HCC 33.724 82.147 -
48.42

3 

10.07
7 

321.8
71 

0.001 -0.534 

A2C MCC 33.724 50.755 -
17.03

1 

10.27
4 

238.3
11 

0.464 -0.207 

A2C PPO 33.724 33.016 0.709 10.30
1 

292.7
92 

0.900 0.008 

DQN HCC 29.397 82.147 -
52.74

9 

10.26
8 

321.8
66 

0.001 -0.571 
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DQN MCC 29.397 50.755 -
21.35

8 

10.46
1 

243.1
72 

0.249 -0.256 

DQN PPO 29.397 33.016 -3.618 10.48
7 

295.4
23 

0.900 -0.040 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.030 0.355 

HCC PPO 82.147 33.016 49.13
1 

10.75
6 

317.8
52 

0.001 0.508 

MCC PPO 50.755 33.016 17.74
0 

10.94
1 

252.1
47 

0.486 0.203 

B3 
 
 

g Hit Counts 0-5 
Minute
s 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

0.560 0.562 -0.002 0.045 -0.054 0.900 -0.005 Tukey’s 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_64 
 

0.560 0.632 -0.072 0.046 -1.567 0.604 -0.150 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

0.560 0.582 -0.022 0.046 -0.472 0.900 -0.045 

𝐷𝑄𝑁_16 
 

HCC 0.560 0.651 -0.091 0.037 -2.457 0.137 -0.190 

𝐷𝑄𝑁_16 
 

MCC 0.560 0.716 -0.156 0.039 -3.998 0.001 -0.326 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

0.562 0.632 -0.069 0.044 -1.566 0.605 -0.145 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

0.562 0.582 -0.019 0.045 -0.433 0.900 -0.040 

𝐷𝑄𝑁_32 
 

HCC 0.562 0.651 -0.088 0.035 -2.522 0.118 -0.184 

𝐷𝑄𝑁_32 
 

MCC 0.562 0.716 -0.154 0.037 -4.127 0.001 -0.321 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

0.632 0.582 0.050 0.045 1.111 0.867 0.105 

𝐷𝑄𝑁_64 
 

HCC 0.632 0.651 -0.019 0.036 -0.525 0.900 -0.039 

𝐷𝑄𝑁_64 
 

MCC 0.632 0.716 -0.084 0.038 -2.220 0.229 -0.176 

𝐷𝑄𝑁_8 
 

HCC 0.582 0.651 -0.069 0.036 -1.916 0.394 -0.144 

𝐷𝑄𝑁_8 
 

MCC 0.582 0.716 -0.134 0.038 -3.521 0.006 -0.281 

HCC MCC 0.651 0.716 -0.065 0.026 -2.490 0.127 -0.137 

6-20 
Minute
s 
      

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

0.567 0.560 0.007 0.031 0.232 0.900 0.012 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_64 
 

0.567 0.634 -0.067 0.030 -2.207 0.235 -0.116 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

0.567 0.526 0.041 0.031 1.326 0.743 0.070 

𝐷𝑄𝑁_16 
 

HCC 0.567 0.854 -0.288 0.025 -
11.61

6 

0.001 -0.495 

𝐷𝑄𝑁_16 
 

MCC 0.567 0.852 -0.286 0.027 -
10.70

8 

0.001 -0.492 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

0.560 0.634 -0.074 0.030 -2.442 0.142 -0.128 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

0.560 0.526 0.034 0.031 1.093 0.878 0.058 

𝐷𝑄𝑁_32 
 

HCC 0.560 0.854 -0.295 0.025 -
11.90

6 

0.001 -0.508 

𝐷𝑄𝑁_32 
 

MCC 0.560 0.852 -0.293 0.027 -
10.97

7 

0.001 -0.504 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

0.634 0.526 0.108 0.030 3.555 0.005 0.186 

𝐷𝑄𝑁_64 
 

HCC 0.634 0.854 -0.220 0.024 -9.087 0.001 -0.380 

𝐷𝑄𝑁_64 
 

MCC 0.634 0.852 -0.218 0.026 -8.335 0.001 -0.376 
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𝐷𝑄𝑁_8 
 

HCC 0.526 0.854 -0.328 0.025 -
13.30

9 

0.001 -0.566 

𝐷𝑄𝑁_8 
 

MCC 0.526 0.852 -0.326 0.027 -
12.27

4 

0.001 -0.562 

HCC MCC 0.854 0.852 0.002 0.019 0.103 0.900 0.003 

h % Aces 0-5 
Minute
s 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

53.103 58.358 -5.255 2.638 -1.992 0.349 -0.395 Tukey’s 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_64 
 

53.103 54.163 -1.061 2.638 -0.402 0.900 -0.080 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

53.103 56.084 -2.981 2.638 -1.130 0.856 -0.224 

𝐷𝑄𝑁_16 
 

HCC 53.103 54.382 -1.279 2.117 -0.604 0.900 -0.097 

𝐷𝑄𝑁_16 
 

MCC 53.103 53.333 -0.230 2.250 -0.102 0.900 -0.017 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

58.358 54.163 4.194 2.638 1.590 0.591 0.316 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

58.358 56.084 2.274 2.638 0.862 0.900 0.171 

𝐷𝑄𝑁_32 
 

HCC 58.358 54.382 3.976 2.117 1.879 0.419 0.300 

𝐷𝑄𝑁_32 
 

MCC 58.358 53.333 5.025 2.250 2.234 0.224 0.379 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

54.163 56.084 -1.921 2.638 -0.728 0.900 -0.145 

𝐷𝑄𝑁_64 
 

HCC 54.163 54.382 -0.219 2.117 -0.103 0.900 -0.017 

𝐷𝑄𝑁_64 
 

MCC 54.163 53.333 0.831 2.250 0.369 0.900 0.063 

𝐷𝑄𝑁_8 
 

HCC 56.084 54.382 1.702 2.117 0.804 0.900 0.129 

𝐷𝑄𝑁_8 
 

MCC 56.084 53.333 2.751 2.250 1.223 0.802 0.208 

HCC MCC 54.382 53.333 1.049 1.607 0.653 0.900 0.079 
6-20 
Minute
s 
      
      

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

56.069 55.545 0.524 1.744 0.300 0.900 0.060 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_64 
 

56.069 55.105 0.964 1.744 0.553 0.900 0.110 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

56.069 59.565 -3.496 1.744 -2.004 0.341 -0.398 

𝐷𝑄𝑁_16 
 

HCC 56.069 49.259 6.810 1.399 4.866 0.001 0.778 

𝐷𝑄𝑁_16 
 

MCC 56.069 50.232 5.837 1.488 3.924 0.001 0.666 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

55.545 55.105 0.440 1.744 0.252 0.900 0.050 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

55.545 59.565 -4.020 1.744 -2.305 0.194 -0.457 

𝐷𝑄𝑁_32 
 

HCC 55.545 49.259 6.286 1.399 4.491 0.001 0.718 

𝐷𝑄𝑁_32 
 

MCC 55.545 50.232 5.313 1.488 3.572 0.005 0.606 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

55.105 59.565 -4.460 1.744 -2.557 0.110 -0.507 

𝐷𝑄𝑁_64 
 

HCC 55.105 49.259 5.846 1.399 4.177 0.001 0.668 

𝐷𝑄𝑁_64 
 

MCC 55.105 50.232 4.873 1.488 3.276 0.014 0.556 

𝐷𝑄𝑁_8 
 

HCC 59.565 49.259 10.30
6 

1.399 7.364 0.001 1.178 

𝐷𝑄𝑁_8 
 

MCC 59.565 50.232 9.334 1.488 6.274 0.001 1.065 
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HCC MCC 49.259 50.232 -0.973 1.062 -0.915 0.900 -0.111 

i % Long Rally 0-5 
Minute
s 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

7.882 4.460 3.422 1.409 2.428 0.148 0.482 Tukey’s 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_64 
 

7.882 7.083 0.798 1.409 0.567 0.900 0.112 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

7.882 6.948 0.933 1.409 0.662 0.900 0.131 

𝐷𝑄𝑁_16 
 

HCC 7.882 4.523 3.359 1.130 2.972 0.037 0.475 

𝐷𝑄𝑁_16 
 

MCC 7.882 7.318 0.563 1.202 0.469 0.900 0.080 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

4.460 7.083 -2.623 1.409 -1.862 0.429 -0.370 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

4.460 6.948 -2.488 1.409 -1.766 0.489 -0.350 

𝐷𝑄𝑁_32 
 

HCC 4.460 4.523 -0.063 1.130 -0.055 0.900 -0.009 

𝐷𝑄𝑁_32 
 

MCC 4.460 7.318 -2.858 1.202 -2.379 0.166 -0.404 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

7.083 6.948 0.135 1.409 0.096 0.900 0.019 

𝐷𝑄𝑁_64 
 

HCC 7.083 4.523 2.561 1.130 2.265 0.210 0.362 

𝐷𝑄𝑁_64 
 

MCC 7.083 7.318 -0.235 1.202 -0.195 0.900 -0.033 

𝐷𝑄𝑁_8 
 

HCC 6.948 4.523 2.426 1.130 2.146 0.266 0.343 

𝐷𝑄𝑁_8 
 

MCC 6.948 7.318 -0.370 1.202 -0.308 0.900 -0.052 

HCC MCC 4.523 7.318 -2.796 0.858 -3.258 0.015 -0.396 
6-20 
Minute
s 
      

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

6.138 6.310 -0.172 0.929 -0.185 0.900 -0.037 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_64 
 

6.138 6.916 -0.777 0.929 -0.837 0.900 -0.166 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

6.138 6.221 -0.083 0.929 -0.089 0.900 -0.018 

𝐷𝑄𝑁_16 
 

HCC 6.138 10.365 -4.226 0.746 -5.668 0.001 -0.906 

𝐷𝑄𝑁_16 
 

MCC 6.138 11.972 -5.834 0.793 -7.361 0.001 -1.250 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

6.310 6.916 -0.605 0.929 -0.651 0.900 -0.129 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

6.310 6.221 0.090 0.929 0.096 0.900 0.019 

𝐷𝑄𝑁_32 
 

HCC 6.310 10.365 -4.054 0.746 -5.438 0.001 -0.870 

𝐷𝑄𝑁_32 
 

MCC 6.310 11.972 -5.662 0.793 -7.144 0.001 -1.213 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

6.916 6.221 0.695 0.929 0.748 0.900 0.148 

𝐷𝑄𝑁_64 
 

HCC 6.916 10.365 -3.449 0.746 -4.626 0.001 -0.740 

𝐷𝑄𝑁_64 
 

MCC 6.916 11.972 -5.057 0.793 -6.380 0.001 -1.083 

𝐷𝑄𝑁_8 
 

HCC 6.221 10.365 -4.144 0.746 -5.558 0.001 -0.889 

𝐷𝑄𝑁_8 
 

MCC 6.221 11.972 -5.751 0.793 -7.257 0.001 -1.232 

B4 g Hit Counts 0-5 
Minute
s 

𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

0.629 0.730 -0.101 0.044 -2.308 0.191 -0.214 Tukey’s 

𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

0.629 0.638 -0.009 0.044 -0.208 0.900 -0.019 

𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

0.629 0.655 -0.026 0.044 -0.594 0.900 -0.056 

𝐴2𝐶_16 
 

HCC 0.629 0.651 -0.021 0.035 -0.611 0.900 -0.045 

𝐴2𝐶_16 
 

MCC 0.629 0.716 -0.087 0.037 -2.326 0.184 -0.184 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

0.730 0.638 0.092 0.043 2.115 0.280 0.195 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

0.730 0.655 0.075 0.044 1.710 0.521 0.158 

𝐴2𝐶_32 
 

HCC 0.730 0.651 0.080 0.035 2.302 0.193 0.169 

𝐴2𝐶_32 MCC 0.730 0.716 0.014 0.037 0.386 0.900 0.030 
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𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

0.638 0.655 -0.017 0.044 -0.390 0.900 -0.036 

𝐴2𝐶_64 
 

HCC 0.638 0.651 -0.012 0.035 -0.355 0.900 -0.026 

𝐴2𝐶_64 
 

MCC 0.638 0.716 -0.078 0.037 -2.104 0.286 -0.165 

𝐴2𝐶_8 
 

HCC 0.655 0.651 0.005 0.035 0.136 0.900 0.010 

𝐴2𝐶_8 
 

MCC 0.655 0.716 -0.061 0.037 -1.626 0.570 -0.128 

HCC MCC 0.651 0.716 -0.065 0.026 -2.523 0.118 -0.139 

6-20 
Minute
s 
      

𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

0.605 0.705 -0.100 0.031 -3.254 0.015 -0.173 

𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

0.605 0.622 -0.017 0.031 -0.541 0.900 -0.029 

𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

0.605 0.597 0.008 0.031 0.256 0.900 0.014 

𝐴2𝐶_16 
 

HCC 0.605 0.854 -0.250 0.025 -9.962 0.001 -0.430 

𝐴2𝐶_16 
 

MCC 0.605 0.852 -0.248 0.027 -9.188 0.001 -0.426 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

0.705 0.622 0.083 0.031 2.735 0.069 0.144 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

0.705 0.597 0.108 0.031 3.526 0.006 0.186 

𝐴2𝐶_32 
 

HCC 0.705 0.854 -0.149 0.024 -6.122 0.001 -0.257 

𝐴2𝐶_32 
 

MCC 0.705 0.852 -0.147 0.026 -5.595 0.001 -0.254 

𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

0.622 0.597 0.025 0.031 0.801 0.900 0.043 

𝐴2𝐶_64 
 

HCC 0.622 0.854 -0.233 0.025 -9.427 0.001 -0.401 

𝐴2𝐶_64 
 

MCC 0.622 0.852 -0.231 0.027 -8.673 0.001 -0.397 

𝐴2𝐶_8 
 

HCC 0.597 0.854 -0.258 0.025 -
10.33

9 

0.001 -0.444 

𝐴2𝐶_8 
 

MCC 0.597 0.852 -0.256 0.027 -9.531 0.001 -0.440 

HCC MCC 0.854 0.852 0.002 0.019 0.103 0.900 0.003 

h % Aces 0-5 
Minute
s 

𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

53.810 54.083 -0.272 2.370 -0.115 0.900 -0.023 Tukey’s 

𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

53.810 53.299 0.511 2.370 0.216 0.900 0.043 

𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

53.810 52.332 1.478 2.370 0.624 0.900 0.124 

𝐴2𝐶_16 
 

HCC 53.810 54.382 -0.571 1.901 -0.301 0.900 -0.048 

𝐴2𝐶_16 
 

MCC 53.810 53.333 0.478 2.021 0.236 0.900 0.040 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

54.083 53.299 0.783 2.370 0.331 0.900 0.066 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

54.083 52.332 1.750 2.370 0.738 0.900 0.147 

𝐴2𝐶_32 
 

HCC 54.083 54.382 -0.299 1.901 -0.157 0.900 -0.025 

𝐴2𝐶_32 
 

MCC 54.083 53.333 0.750 2.021 0.371 0.900 0.063 

𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

53.299 52.332 0.967 2.370 0.408 0.900 0.081 

𝐴2𝐶_64 
 

HCC 53.299 54.382 -1.083 1.901 -0.569 0.900 -0.091 

𝐴2𝐶_64 
 

MCC 53.299 53.333 -0.034 2.021 -0.017 0.900 -0.003 
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𝐴2𝐶_8 
 

HCC 52.332 54.382 -2.049 1.901 -1.078 0.886 -0.172 

𝐴2𝐶_8 
 

MCC 52.332 53.333 -1.000 2.021 -0.495 0.900 -0.084 

HCC MCC 54.382 53.333 1.049 1.443 0.727 0.900 0.088 
6-20 
Minute
s 
      

𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

53.076 52.170 0.906 1.627 0.557 0.900 0.110 

𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

53.076 52.981 0.094 1.627 0.058 0.900 0.012 

𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

53.076 54.117 -1.042 1.627 -0.640 0.900 -0.127 

𝐴2𝐶_16 
 

HCC 53.076 49.259 3.816 1.305 2.924 0.042 0.468 

𝐴2𝐶_16 
 

MCC 53.076 50.232 2.844 1.388 2.049 0.316 0.348 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

52.170 52.981 -0.811 1.627 -0.499 0.900 -0.099 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

52.170 54.117 -1.947 1.627 -1.197 0.817 -0.238 

𝐴2𝐶_32 
 

HCC 52.170 49.259 2.911 1.305 2.230 0.226 0.357 

𝐴2𝐶_32 
 

MCC 52.170 50.232 1.938 1.388 1.397 0.702 0.237 

𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

52.981 54.117 -1.136 1.627 -0.698 0.900 -0.139 

𝐴2𝐶_64 
 

HCC 52.981 49.259 3.722 1.305 2.851 0.051 0.456 

𝐴2𝐶_64 
 

MCC 52.981 50.232 2.749 1.388 1.981 0.355 0.336 

𝐴2𝐶_8 
 

HCC 54.117 49.259 4.858 1.305 3.721 0.003 0.595 

𝐴2𝐶_8 
 

MCC 54.117 50.232 3.885 1.388 2.800 0.059 0.475 

HCC MCC 49.259 50.232 -0.973 0.991 -0.981 0.900 -0.119 

i % Long Rally 0-5 
Minute
s 

𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

5.395 6.147 -0.752 1.314 -0.572 0.900 -0.114 Tukey’s 

𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

5.395 6.973 -1.578 1.314 -1.201 0.815 -0.238 

𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

5.395 5.357 0.038 1.314 0.029 0.900 0.006 

𝐴2𝐶_16 
 

HCC 5.395 4.523 0.872 1.054 0.828 0.900 0.132 

𝐴2𝐶_16 
 

MCC 5.395 7.318 -1.923 1.120 -1.717 0.518 -0.291 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

6.147 6.973 -0.826 1.314 -0.629 0.900 -0.125 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

6.147 5.357 0.790 1.314 0.602 0.900 0.119 

𝐴2𝐶_32 
 

HCC 6.147 4.523 1.624 1.054 1.541 0.619 0.246 

𝐴2𝐶_32 
 

MCC 6.147 7.318 -1.171 1.120 -1.045 0.900 -0.177 

𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

6.973 5.357 1.617 1.314 1.231 0.798 0.244 

𝐴2𝐶_64 
 

HCC 6.973 4.523 2.451 1.054 2.325 0.186 0.372 

𝐴2𝐶_64 
 

MCC 6.973 7.318 -0.345 1.120 -0.308 0.900 -0.052 

𝐴2𝐶_8 
 

HCC 5.357 4.523 0.834 1.054 0.791 0.900 0.127 

𝐴2𝐶_8 
 

MCC 5.357 7.318 -1.962 1.120 -1.751 0.498 -0.297 

HCC MCC 4.523 7.318 -2.796 0.800 -3.494 0.007 -0.424 

6-20 
Minute
s 

𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

6.077 7.705 -1.628 0.942 -1.727 0.512 -0.343 

𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

6.077 6.942 -0.865 0.942 -0.917 0.900 -0.182 
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      𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

6.077 6.231 -0.154 0.942 -0.163 0.900 -0.032 

𝐴2𝐶_16 
 

HCC 6.077 10.365 -4.287 0.756 -5.671 0.001 -0.907 

𝐴2𝐶_16 
 

MCC 6.077 11.972 -5.895 0.804 -7.336 0.001 -1.245 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

7.705 6.942 0.763 0.942 0.810 0.900 0.161 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

7.705 6.231 1.474 0.942 1.564 0.606 0.310 

𝐴2𝐶_32 
 

HCC 7.705 10.365 -2.660 0.756 -3.518 0.006 -0.563 

𝐴2𝐶_32 
 

MCC 7.705 11.972 -4.267 0.804 -5.310 0.001 -0.901 

𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

6.942 6.231 0.711 0.942 0.754 0.900 0.150 

𝐴2𝐶_64 
 

HCC 6.942 10.365 -3.423 0.756 -4.528 0.001 -0.724 

𝐴2𝐶_64 
 

MCC 6.942 11.972 -5.030 0.804 -6.260 0.001 -1.063 

𝐴2𝐶_8 
 

HCC 6.231 10.365 -4.134 0.756 -5.468 0.001 -0.874 

𝐴2𝐶_8 
 

MCC 6.231 11.972 -5.741 0.804 -7.144 0.001 -1.213 

HCC MCC 10.365 11.972 -1.608 0.574 -2.801 0.059 -0.340 

B5 g Hit Counts 0-5 
Minute
s 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

0.557 0.555 0.002 0.044 0.035 0.900 0.003 Tukey’s 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

0.557 0.632 -0.075 0.044 -1.684 0.537 -0.159 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

0.557 0.552 0.005 0.045 0.121 0.900 0.011 

𝑃𝑃𝑂_16 
 

HCC 0.557 0.651 -0.094 0.035 -2.639 0.088 -0.199 

𝑃𝑃𝑂_16 
 

MCC 0.557 0.716 -0.159 0.038 -4.227 0.001 -0.338 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

0.555 0.632 -0.076 0.044 -1.734 0.508 -0.162 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

0.555 0.552 0.004 0.044 0.088 0.900 0.008 

𝑃𝑃𝑂_32 
 

HCC 0.555 0.651 -0.095 0.035 -2.720 0.072 -0.202 

𝑃𝑃𝑂_32 
 

MCC 0.555 0.716 -0.161 0.037 -4.322 0.001 -0.341 

𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

0.632 0.552 0.080 0.044 1.816 0.457 0.171 

𝑃𝑃𝑂_64 
 

HCC 0.632 0.651 -0.019 0.035 -0.536 0.900 -0.040 

𝑃𝑃𝑂_64 
 

MCC 0.632 0.716 -0.084 0.037 -2.262 0.210 -0.179 

𝑃𝑃𝑂_8 
 

HCC 0.552 0.651 -0.099 0.035 -2.816 0.055 -0.211 

𝑃𝑃𝑂_8 
 

MCC 0.552 0.716 -0.164 0.037 -4.405 0.001 -0.350 

HCC MCC 0.651 0.716 -0.065 0.026 -2.532 0.115 -0.139 

6-20 
Minute
s 
      

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

0.508 0.523 -0.015 0.030 -0.486 0.900 -0.026 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

0.508 0.513 -0.005 0.030 -0.160 0.900 -0.008 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

0.508 0.556 -0.048 0.030 -1.579 0.597 -0.083 

𝑃𝑃𝑂_16 
 

HCC 0.508 0.854 -0.347 0.024 -
14.20

6 

0.001 -0.607 

𝑃𝑃𝑂_16 
 

MCC 0.508 0.852 -0.345 0.026 -
13.11

4 

0.001 -0.603 

𝑃𝑃𝑂_32 𝑃𝑃𝑂_64 0.523 0.513 0.010 0.030 0.328 0.900 0.017 
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𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

0.523 0.556 -0.033 0.030 -1.090 0.880 -0.058 

𝑃𝑃𝑂_32 
 

HCC 0.523 0.854 -0.332 0.024 -
13.61

5 

0.001 -0.581 

𝑃𝑃𝑂_32 
 

MCC 0.523 0.852 -0.330 0.026 -
12.56

3 

0.001 -0.577 

𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

0.513 0.556 -0.043 0.030 -1.424 0.687 -0.075 

𝑃𝑃𝑂_64 
 

HCC 0.513 0.854 -0.342 0.024 -
14.09

2 

0.001 -0.598 

𝑃𝑃𝑂_64 
 

MCC 0.513 0.852 -0.340 0.026 -
12.99

7 

0.001 -0.595 

𝑃𝑃𝑂_8 
 

HCC 0.556 0.854 -0.299 0.024 -
12.40

6 

0.001 -0.523 

𝑃𝑃𝑂_8 
 

MCC 0.556 0.852 -0.297 0.026 -
11.42

2 

0.001 -0.520 

HCC MCC 0.854 0.852 0.002 0.019 0.104 0.900 0.003 

h % Aces 0-5 
Minute
s 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

59.143 59.654 -0.511 2.553 -0.200 0.900 -0.040 Tukey’s 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

59.143 55.534 3.610 2.553 1.414 0.692 0.281 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

59.143 58.904 0.239 2.553 0.094 0.900 0.019 

𝑃𝑃𝑂_16 
 

HCC 59.143 54.382 4.762 2.048 2.325 0.186 0.372 

𝑃𝑃𝑂_16 
 

MCC 59.143 53.333 5.811 2.177 2.669 0.084 0.453 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

59.654 55.534 4.120 2.553 1.614 0.577 0.320 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

59.654 58.904 0.750 2.553 0.294 0.900 0.058 

𝑃𝑃𝑂_32 
 

HCC 59.654 54.382 5.273 2.048 2.575 0.106 0.412 

𝑃𝑃𝑂_32 
 

MCC 59.654 53.333 6.322 2.177 2.904 0.044 0.493 

𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

55.534 58.904 -3.370 2.553 -1.320 0.746 -0.262 

𝑃𝑃𝑂_64 
 

HCC 55.534 54.382 1.152 2.048 0.563 0.900 0.090 

𝑃𝑃𝑂_64 
 

MCC 55.534 53.333 2.201 2.177 1.011 0.900 0.172 

𝑃𝑃𝑂_8 
 

HCC 58.904 54.382 4.522 2.048 2.208 0.236 0.353 

𝑃𝑃𝑂_8 
 

MCC 58.904 53.333 5.571 2.177 2.559 0.110 0.434 

HCC MCC 54.382 53.333 1.049 1.555 0.675 0.900 0.082 
6-20 
Minute
s 
      

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

60.504 60.595 -0.091 1.900 -0.048 0.900 -0.010 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

60.504 60.941 -0.438 1.900 -0.230 0.900 -0.046 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

60.504 58.316 2.187 1.900 1.151 0.844 0.228 

𝑃𝑃𝑂_16 
 

HCC 60.504 49.259 11.24
4 

1.524 7.376 0.001 1.180 

𝑃𝑃𝑂_16 
 

MCC 60.504 50.232 10.27
2 

1.620 6.339 0.001 1.076 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

60.595 60.941 -0.347 1.900 -0.182 0.900 -0.036 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

60.595 58.316 2.279 1.900 1.199 0.816 0.238 

𝑃𝑃𝑂_32 
 

HCC 60.595 49.259 11.33
5 

1.524 7.436 0.001 1.189 

𝑃𝑃𝑂_32 
 

MCC 60.595 50.232 10.36
3 

1.620 6.395 0.001 1.086 
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𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

60.941 58.316 2.625 1.900 1.382 0.711 0.274 

𝑃𝑃𝑂_64 
 

HCC 60.941 49.259 11.68
2 

1.524 7.663 0.001 1.225 

𝑃𝑃𝑂_64 
 

MCC 60.941 50.232 10.70
9 

1.620 6.609 0.001 1.122 

𝑃𝑃𝑂_8 
 

HCC 58.316 49.259 9.057 1.524 5.941 0.001 0.950 

𝑃𝑃𝑂_8 
 

MCC 58.316 50.232 8.084 1.620 4.989 0.001 0.847 

HCC MCC 49.259 50.232 -0.973 1.157 -0.840 0.900 -0.102 

i % Long Rally 0-5 
Minute
s 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

4.885 5.501 -0.616 1.359 -0.453 0.900 -0.090 Tukey’s 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

4.885 7.393 -2.508 1.359 -1.845 0.439 -0.366 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

4.885 6.020 -1.135 1.359 -0.835 0.900 -0.166 

𝑃𝑃𝑂_16 
 

HCC 4.885 4.523 0.362 1.090 0.332 0.900 0.053 

𝑃𝑃𝑂_16 
 

MCC 4.885 7.318 -2.433 1.159 -2.099 0.290 -0.356 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

5.501 7.393 -1.892 1.359 -1.392 0.705 -0.276 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

5.501 6.020 -0.519 1.359 -0.382 0.900 -0.076 

𝑃𝑃𝑂_32 
 

HCC 5.501 4.523 0.979 1.090 0.897 0.900 0.144 

𝑃𝑃𝑂_32 
 

MCC 5.501 7.318 -1.817 1.159 -1.568 0.604 -0.266 

𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

7.393 6.020 1.373 1.359 1.010 0.900 0.201 

𝑃𝑃𝑂_64 
 

HCC 7.393 4.523 2.871 1.090 2.633 0.091 0.421 

𝑃𝑃𝑂_64 
 

MCC 7.393 7.318 0.075 1.159 0.065 0.900 0.011 

𝑃𝑃𝑂_8 
 

HCC 6.020 4.523 1.497 1.090 1.373 0.716 0.220 

𝑃𝑃𝑂_8 
 

MCC 6.020 7.318 -1.298 1.159 -1.120 0.862 -0.190 

HCC MCC 4.523 7.318 -2.796 0.828 -3.377 0.010 -0.410 
6-20 
Minute
s 
      

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

6.008 5.224 0.784 0.871 0.900 0.900 0.179 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

6.008 5.339 0.669 0.871 0.769 0.900 0.153 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

6.008 6.234 -0.226 0.871 -0.260 0.900 -0.052 

𝑃𝑃𝑂_16 
 

HCC 6.008 10.365 -4.357 0.699 -6.237 0.001 -0.997 

𝑃𝑃𝑂_16 
 

MCC 6.008 11.972 -5.964 0.743 -8.032 0.001 -1.363 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

5.224 5.339 -0.114 0.871 -0.131 0.900 -0.026 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

5.224 6.234 -1.010 0.871 -1.160 0.839 -0.230 

𝑃𝑃𝑂_32 
 

HCC 5.224 10.365 -5.140 0.699 -7.358 0.001 -1.177 

𝑃𝑃𝑂_32 
 

MCC 5.224 11.972 -6.748 0.743 -9.088 0.001 -1.543 

𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

5.339 6.234 -0.896 0.871 -1.029 0.900 -0.204 

𝑃𝑃𝑂_64 
 

HCC 5.339 10.365 -5.026 0.699 -7.195 0.001 -1.151 

𝑃𝑃𝑂_64 
 

MCC 5.339 11.972 -6.634 0.743 -8.934 0.001 -1.517 

𝑃𝑃𝑂_8 
 

HCC 6.234 10.365 -4.130 0.699 -5.913 0.001 -0.946 

𝑃𝑃𝑂_8 
 

MCC 6.234 11.972 -5.738 0.743 -7.728 0.001 -1.312 
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HCC MCC 10.365 11.972 -1.608 0.530 -3.031 0.031 -0.368 

B8 g Hit Counts 0-5 
Minute
s 

A2C DQN 0.771 0.717 0.054 0.028 1.937 0.298 0.103 Tukey’s 

A2C HCC 0.771 0.651 0.121 0.027 4.508 0.001 0.229 
A2C MCC 0.771 0.716 0.055 0.030 1.827 0.359 0.105 
A2C PPO 0.771 0.698 0.073 0.028 2.594 0.072 0.139 

DQN HCC 0.717 0.651 0.066 0.027 2.476 0.096 0.126 
DQN MCC 0.717 0.716 0.001 0.030 0.025 0.900 0.001 
DQN PPO 0.717 0.698 0.019 0.028 0.668 0.900 0.036 
HCC MCC 0.651 0.716 -0.065 0.029 -2.263 0.157 -0.124 
HCC PPO 0.651 0.698 -0.047 0.027 -1.760 0.399 -0.090 
MCC PPO 0.716 0.698 0.018 0.030 0.598 0.900 0.034 

6-20 
Minute
s 
      

A2C DQN 0.777 0.762 0.016 0.018 0.866 0.900 0.026 
A2C HCC 0.777 0.854 -0.077 0.018 -4.329 0.001 -0.127 
A2C MCC 0.777 0.852 -0.075 0.021 -3.647 0.002 -0.124 

A2C PPO 0.777 0.712 0.065 0.018 3.561 0.003 0.108 
DQN HCC 0.762 0.854 -0.093 0.018 -5.262 0.001 -0.153 
DQN MCC 0.762 0.852 -0.091 0.020 -4.442 0.001 -0.150 
DQN PPO 0.762 0.712 0.049 0.018 2.723 0.051 0.082 
HCC MCC 0.854 0.852 0.002 0.020 0.099 0.900 0.003 
HCC PPO 0.854 0.712 0.142 0.018 8.009 0.001 0.235 
MCC PPO 0.852 0.712 0.140 0.021 6.825 0.001 0.232 

h % Aces 0-5 
Minute
s 

A2C DQN 53.293 52.579 0.714 1.455 0.491 0.900 0.057 Tukey’s 

A2C HCC 53.293 54.382 -1.089 1.404 -0.776 0.900 -0.086 
A2C MCC 53.293 53.333 -0.040 1.582 -0.025 0.900 -0.003 

A2C PPO 53.293 54.248 -0.956 1.455 -0.657 0.900 -0.076 
DQN HCC 52.579 54.382 -1.803 1.404 -1.284 0.677 -0.143 
DQN MCC 52.579 53.333 -0.754 1.582 -0.477 0.900 -0.060 
DQN PPO 52.579 54.248 -1.670 1.455 -1.147 0.754 -0.132 
HCC MCC 54.382 53.333 1.049 1.535 0.683 0.900 0.083 
HCC PPO 54.382 54.248 0.133 1.404 0.095 0.900 0.011 
MCC PPO 53.333 54.248 -0.916 1.582 -0.579 0.900 -0.072 

6-20 
Minute
s 
      

A2C DQN 52.530 49.935 2.595 0.959 2.706 0.054 0.312 
A2C HCC 52.530 49.259 3.270 0.925 3.535 0.004 0.393 
A2C MCC 52.530 50.232 2.298 1.042 2.205 0.179 0.276 
A2C PPO 52.530 52.511 0.018 0.959 0.019 0.900 0.002 

DQN HCC 49.935 49.259 0.676 0.925 0.730 0.900 0.081 
DQN MCC 49.935 50.232 -0.297 1.042 -0.285 0.900 -0.036 
DQN PPO 49.935 52.511 -2.576 0.959 -2.687 0.057 -0.310 
HCC MCC 49.259 50.232 -0.973 1.011 -0.962 0.860 -0.117 
HCC PPO 49.259 52.511 -3.252 0.925 -3.515 0.004 -0.391 
MCC PPO 50.232 52.511 -2.280 1.042 -2.187 0.186 -0.274 

i % Long Rally 0-5 
Minute
s 

A2C DQN 12.722 10.195 2.527 0.631 4.004 0.001 0.461 Tukey’s 

A2C HCC 12.722 10.365 2.357 0.609 3.871 0.001 0.430 
A2C MCC 12.722 11.972 0.750 0.686 1.093 0.785 0.137 
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A2C PPO 12.722 10.183 2.540 0.631 4.024 0.001 0.463 
DQN HCC 10.195 10.365 -0.169 0.609 -0.278 0.900 -0.031 
DQN MCC 10.195 11.972 -1.777 0.686 -2.590 0.073 -0.324 
DQN PPO 10.195 10.183 0.013 0.631 0.020 0.900 0.002 
HCC MCC 10.365 11.972 -1.608 0.666 -2.415 0.113 -0.293 
HCC PPO 10.365 10.183 0.182 0.609 0.299 0.900 0.033 
MCC PPO 11.972 10.183 1.790 0.686 2.609 0.070 0.327 

6-20 
Minute
s 
      

A2C DQN 11.266 9.629 1.637 0.589 2.777 0.044 0.226 
A2C HCC 11.266 7.444 3.823 0.569 6.721 0.001 0.529 
A2C MCC 11.266 9.645 1.621 0.641 2.530 0.085 0.224 
A2C PPO 11.266 9.793 1.474 0.589 2.500 0.091 0.204 

DQN HCC 9.629 7.444 2.186 0.569 3.843 0.001 0.302 
DQN MCC 9.629 9.645 -0.016 0.641 -0.025 0.900 -0.002 
DQN PPO 9.629 9.793 -0.163 0.589 -0.277 0.900 -0.023 
HCC MCC 7.444 9.645 -2.202 0.622 -3.540 0.004 -0.305 

HCC PPO 7.444 9.793 -2.349 0.569 -4.130 0.001 -0.325 
MCC PPO 9.645 9.793 -0.147 0.641 -0.230 0.900 -0.020 

B9 g Hit Counts 0-5 
Minute
s 

A2C DQN 0.722 0.719 0.003 0.027 0.124 0.900 0.007 Tukey’s 

A2C HCC 0.722 0.651 0.072 0.026 2.773 0.044 0.141 
A2C MCC 0.722 0.716 0.006 0.029 0.217 0.900 0.012 
A2C PPO 0.722 0.740 -0.018 0.027 -0.644 0.900 -0.035 

DQN HCC 0.719 0.651 0.068 0.026 2.648 0.062 0.135 
DQN MCC 0.719 0.716 0.003 0.029 0.101 0.900 0.006 
DQN PPO 0.719 0.740 -0.021 0.027 -0.769 0.900 -0.041 
HCC MCC 0.651 0.716 -0.065 0.028 -2.346 0.131 -0.129 
HCC PPO 0.651 0.740 -0.089 0.026 -3.444 0.005 -0.176 

MCC PPO 0.716 0.740 -0.024 0.029 -0.819 0.900 -0.047 

6-20 
Minute
s 
      

A2C DQN 0.724 0.741 -0.017 0.018 -0.947 0.868 -0.029 
A2C HCC 0.724 0.854 -0.131 0.017 -7.488 0.001 -0.220 
A2C MCC 0.724 0.852 -0.129 0.020 -6.378 0.001 -0.217 
A2C PPO 0.724 0.727 -0.004 0.018 -0.218 0.900 -0.007 

DQN HCC 0.741 0.854 -0.114 0.017 -6.567 0.001 -0.192 
DQN MCC 0.741 0.852 -0.112 0.020 -5.570 0.001 -0.189 
DQN PPO 0.741 0.727 0.013 0.018 0.727 0.900 0.022 
HCC MCC 0.854 0.852 0.002 0.020 0.100 0.900 0.003 
HCC PPO 0.854 0.727 0.127 0.017 7.259 0.001 0.214 

MCC PPO 0.852 0.727 0.125 0.020 6.181 0.001 0.211 

h % Aces 0-5 
Minute
s 

A2C DQN 51.318 53.675 -2.356 1.437 -1.640 0.473 -0.189 Tukey’s 

A2C HCC 51.318 54.382 -3.064 1.387 -2.209 0.177 -0.246 
A2C MCC 51.318 53.333 -2.014 1.562 -1.289 0.674 -0.161 
A2C PPO 51.318 50.866 0.453 1.437 0.315 0.900 0.036 

DQN HCC 53.675 54.382 -0.707 1.387 -0.510 0.900 -0.057 
DQN MCC 53.675 53.333 0.342 1.562 0.219 0.900 0.027 
DQN PPO 53.675 50.866 2.809 1.437 1.955 0.290 0.225 
HCC MCC 54.382 53.333 1.049 1.516 0.692 0.900 0.084 
HCC PPO 54.382 50.866 3.516 1.387 2.536 0.084 0.282 
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MCC PPO 53.333 50.866 2.467 1.562 1.579 0.510 0.198 
6-20 
Minute
s 
      

A2C DQN 52.596 51.199 1.397 0.907 1.540 0.532 0.177 
A2C HCC 52.596 49.259 3.337 0.875 3.813 0.001 0.424 
A2C MCC 52.596 50.232 2.364 0.986 2.398 0.117 0.300 
A2C PPO 52.596 51.658 0.938 0.907 1.034 0.818 0.119 

DQN HCC 51.199 49.259 1.940 0.875 2.217 0.175 0.246 
DQN MCC 51.199 50.232 0.968 0.986 0.981 0.848 0.123 
DQN PPO 51.199 51.658 -0.459 0.907 -0.506 0.900 -0.058 
HCC MCC 49.259 50.232 -0.973 0.957 -1.017 0.828 -0.124 
HCC PPO 49.259 51.658 -2.399 0.875 -2.742 0.049 -0.305 
MCC PPO 50.232 51.658 -1.427 0.986 -1.447 0.584 -0.181 

i % Long Rally 0-5 
Minute
s 

A2C DQN 9.519 9.710 -0.191 0.965 -0.198 0.900 -0.023 Tukey’s 

A2C HCC 9.519 4.523 4.997 0.931 5.366 0.001 0.596 
A2C MCC 9.519 7.318 2.201 1.049 2.098 0.222 0.263 

A2C PPO 9.519 10.462 -0.942 0.965 -0.976 0.851 -0.112 
DQN HCC 9.710 4.523 5.188 0.931 5.571 0.001 0.619 
DQN MCC 9.710 7.318 2.392 1.049 2.280 0.153 0.285 
DQN PPO 9.710 10.462 -0.752 0.965 -0.779 0.900 -0.090 
HCC MCC 4.523 7.318 -2.796 1.018 -2.746 0.048 -0.334 
HCC PPO 4.523 10.462 -5.939 0.931 -6.378 0.001 -0.709 
MCC PPO 7.318 10.462 -3.144 1.049 -2.996 0.024 -0.375 

6-20 
Minute
s 
      

A2C DQN 10.431 10.187 0.244 0.591 0.413 0.900 0.048 
A2C HCC 10.431 10.365 0.066 0.570 0.116 0.900 0.013 
A2C MCC 10.431 11.972 -1.541 0.642 -2.400 0.117 -0.300 
A2C PPO 10.431 10.049 0.382 0.591 0.646 0.900 0.074 

DQN HCC 10.187 10.365 -0.178 0.570 -0.312 0.900 -0.035 
DQN MCC 10.187 11.972 -1.785 0.642 -2.780 0.044 -0.348 
DQN PPO 10.187 10.049 0.138 0.591 0.233 0.900 0.027 
HCC MCC 10.365 11.972 -1.608 0.623 -2.579 0.075 -0.313 
HCC PPO 10.365 10.049 0.316 0.570 0.554 0.900 0.062 
MCC PPO 11.972 10.049 1.923 0.642 2.994 0.024 0.375 

B6 a Relative 
improvement 
(%) in the 
average hit 
counts – 
DQN 

 𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_32 
 

6.400 43.207 -
36.80

6 

17.55
4 

75.73
3 

0.300 -0.416 Games 
Howell 

 
𝐷𝑄𝑁_16 

 
𝐷𝑄𝑁_64 

 
6.400 22.119 -

15.71
9 

13.19
4 

94.59
7 

0.820 -0.236 

𝐷𝑄𝑁_16 
 

𝐷𝑄𝑁_8 
 

6.400 12.525 -6.124 12.50
2 

97.07
5 

0.900 -0.097 

𝐷𝑄𝑁_16 
 

HCC 6.400 82.147 -
75.74

6 

11.22
9 

133.2
16 

0.001 -1.079 

𝐷𝑄𝑁_16 
 

MCC 6.400 50.755 -
44.35

5 

11.40
7 

126.2
60 

0.002 -0.660 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_64 
 

43.207 22.119 21.08
8 

18.47
0 

84.89
0 

0.848 0.227 

𝐷𝑄𝑁_32 
 

𝐷𝑄𝑁_8 
 

43.207 12.525 30.68
2 

17.98
3 

80.30
0 

0.527 0.339 

𝐷𝑄𝑁_32 
 

HCC 43.207 82.147 -
38.94

0 

17.12
2 

73.46
2 

0.218 -0.364 
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𝐷𝑄𝑁_32 
 

MCC 43.207 50.755 -7.549 17.23
9 

74.55
0 

0.900 -0.074 

𝐷𝑄𝑁_64 
 

𝐷𝑄𝑁_8 
 

22.119 12.525 9.594 13.75
9 

97.14
5 

0.900 0.138 

𝐷𝑄𝑁_64 
 

HCC 22.119 82.147 -
60.02

7 

12.61
4 

106.9
83 

0.001 -0.761 

𝐷𝑄𝑁_64 
 

MCC 22.119 50.755 -
28.63

6 

12.77
2 

105.8
63 

0.228 -0.381 

𝐷𝑄𝑁_8 
 

HCC 12.525 82.147 -
69.62

2 

11.88
9 

118.9
17 

0.001 -0.936 

𝐷𝑄𝑁_8 
 

MCC 12.525 50.755 -
38.23

1 

12.05
7 

115.6
35 

0.023 -0.538 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.043 0.355 

b Relative 
improvement 
(%) in the 
average hit 
counts – A2C 

 𝐴2𝐶_16 
 

𝐴2𝐶_32 
 

18.203 23.304 -5.101 11.70
0 

97.98
5 

0.900 -0.087 Games 
Howell 

 𝐴2𝐶_16 
 

𝐴2𝐶_64 
 

18.203 23.700 -5.497 13.38
0 

92.45
7 

0.900 -0.082 

𝐴2𝐶_16 
 

𝐴2𝐶_8 
 

18.203 13.710 4.493 10.92
9 

96.32
5 

0.900 0.082 

𝐴2𝐶_16 
 

HCC 18.203 82.147 -
63.94

4 

11.09
8 

136.5
51 

0.001 -0.921 

𝐴2𝐶_16 
 

MCC 18.203 50.755 -
32.55

2 

11.27
7 

128.5
59 

0.051 -0.490 

𝐴2𝐶_32 
 

𝐴2𝐶_64 
 

23.304 23.700 -0.396 13.44
4 

92.95
1 

0.900 -0.006 

𝐴2𝐶_32 
 

𝐴2𝐶_8 
 

23.304 13.710 9.594 11.00
7 

96.00
6 

0.900 0.173 

𝐴2𝐶_32 
 

HCC 23.304 82.147 -
58.84

3 

11.17
5 

134.5
80 

0.001 -0.842 

𝐴2𝐶_32 
 

MCC 23.304 50.755 -
27.45

2 

11.35
3 

127.2
09 

0.158 -0.410 

𝐴2𝐶_64 
 

𝐴2𝐶_8 
 

23.700 13.710 9.990 12.77
8 

86.48
2 

0.900 0.155 

𝐴2𝐶_64 
 

HCC 23.700 82.147 -
58.44

6 

12.92
3 

102.8
20 

0.001 -0.723 

𝐴2𝐶_64 
 

MCC 23.700 50.755 -
27.05

5 

13.07
7 

102.2
71 

0.312 -0.351 

𝐴2𝐶_8 
 

HCC 13.710 82.147 -
68.43

6 

10.36
4 

158.7
02 

0.001 -1.056 

𝐴2𝐶_8 
 

MCC 13.710 50.755 -
37.04

5 

10.55
6 

142.0
25 

0.008 -0.596 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.043 0.355 

c Relative 
improvement 
(%) in the 
average hit 
counts – PPO 

 𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_32 
 

24.036 11.686 12.35
0 

14.07
7 

81.19
4 

0.900 0.174 Games 
Howell 

 𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_64 
 

24.036 -1.291 25.32
6 

14.03
7 

80.68
3 

0.470 0.358 

𝑃𝑃𝑂_16 
 

𝑃𝑃𝑂_8 
 

24.036 49.866 -
25.83

0 

25.19
0 

75.51
6 

0.900 -0.204 

𝑃𝑃𝑂_16 
 

HCC 24.036 82.147 -
58.11

1 

14.13
2 

90.26
2 

0.001 -0.658 
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𝑃𝑃𝑂_16 
 

MCC 24.036 50.755 -
26.72

0 

14.27
4 

90.89
8 

0.428 -0.318 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

11.686 -1.291 12.97
7 

10.33
8 

97.98
9 

0.783 0.249 

𝑃𝑃𝑂_32 
 

𝑃𝑃𝑂_64 
 

11.686 49.866 -
38.18

0 

23.33
3 

59.66
2 

0.568 -0.325 

𝑃𝑃𝑂_32 
 

HCC 11.686 82.147 -
70.46

1 

10.46
8 

155.1
89 

0.001 -1.076 

𝑃𝑃𝑂_32 
 

MCC 11.686 50.755 -
39.07

0 

10.65
8 

140.1
07 

0.005 -0.622 

𝑃𝑃𝑂_64 
 

𝑃𝑃𝑂_8 
 

-1.291 49.866 -
51.15

7 

23.30
8 

59.44
5 

0.256 -0.436 

𝑃𝑃𝑂_64 
 

HCC -1.291 82.147 -
83.43

7 

10.41
4 

157.0
04 

0.001 -1.281 

𝑃𝑃𝑂_64 
 

MCC -1.291 50.755 -
52.04

6 

10.60
5 

141.1
09 

0.001 -0.833 

𝑃𝑃𝑂_8 
 

HCC 49.866 82.147 -
32.28

0 

23.36
6 

60.51
4 

0.712 -0.221 

𝑃𝑃𝑂_8 
 

MCC 49.866 50.755 -0.889 23.45
2 

61.22
4 

0.900 -0.006 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.043 0.355 

B10 a Relative 
improvement 
(%) in the 
average hit 
counts – Ball 
Position Input 

 A2C DQN 33.724 28.251 5.473 8.669 283.8
06 

0.900 0.073 Games 
Howell 

 A2C HCC 33.724 82.147 -
48.42

3 

10.07
7 

321.8
71 

0.001 -0.534 

A2C MCC 33.724 50.755 -
17.03

1 

10.27
4 

238.3
11 

0.464 -0.207 

A2C PPO 33.724 33.016 0.709 10.30
1 

292.7
92 

0.900 0.008 

DQN HCC 28.251 82.147 -
53.89

6 

9.206 304.7
84 

0.001 -0.651 

DQN MCC 28.251 50.755 -
22.50

5 

9.421 205.7
71 

0.123 -0.299 

DQN PPO 28.251 33.016 -4.765 9.450 266.0
29 

0.900 -0.058 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.030 0.355 

HCC PPO 82.147 33.016 49.13
1 

10.75
6 

317.8
52 

0.001 0.508 

MCC PPO 50.755 33.016 17.74
0 

10.94
1 

252.1
47 

0.486 0.203 

b Relative 
improvement 
(%) in the 
average hit 
counts – 
Paddle&Ball 
Position Input 

 A2C DQN 21.717 24.949 -3.232 8.194 291.1
51 

0.900 -0.045 Games 
Howell 

 A2C HCC 21.717 82.147 -
60.42

9 

9.165 303.1
51 

0.001 -0.733 

A2C MCC 21.717 50.755 -
29.03

8 

9.381 203.8
60 

0.019 -0.387 

A2C PPO 21.717 14.690 7.027 7.082 292.7
73 

0.842 0.114 

DQN HCC 24.949 82.147 -
57.19

7 

9.711 318.5
26 

0.001 -0.655 
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DQN MCC 24.949 50.755 -
25.80

6 

9.915 226.6
75 

0.073 -0.326 

DQN PPO 24.949 14.690 10.25
9 

7.775 276.1
59 

0.657 0.152 

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

262.9
94 

0.030 0.355 

HCC PPO 82.147 14.690 67.45
6 

8.792 284.2
59 

0.001 0.853 

MCC PPO 50.755 14.690 36.06
5 

9.017 184.9
81 

0.001 0.501 

5 e Hit Counts 0-5 
Minute
s 

CL(3) CL(7) 0.696 0.682 0.014 0.050 0.281 0.900 0.027 Tuckey’s 
 

CL(3) HCC 0.696 0.651 0.045 0.039 1.147 0.641 0.088 

CL(3) MCC 0.696 0.716 -0.020 0.042 -0.484 0.900 -0.039 

CL(7) HCC 0.682 0.651 0.031 0.039 0.804 0.834 0.061 

CL(7) MCC 0.682 0.716 -0.034 0.041 -0.827 0.821 -0.066 

HCC MCC 0.651 0.716 -0.065 0.028 -2.318 0.094 -0.127 
6-20 
Minute
s 
 

CL(3) CL(7) 0.703 0.916 -0.213 0.039 -5.439 0.001 -0.336 

CL(3) HCC 0.703 0.854 -0.151 0.030 -4.972 0.001 -0.239 

CL(3) MCC 0.703 0.852 -0.149 0.032 -4.624 0.001 -0.236 

CL(7) HCC 0.916 0.854 0.061 0.030 2.017 0.182 0.097 

CL(7) MCC 0.916 0.852 0.063 0.032 1.962 0.203 0.100 

HCC MCC 0.854 0.852 0.002 0.021 0.094 0.900 0.003 

f %Aces 0-5 
Minute
s 

CL(3) CL(7) 53.140 54.239 -1.099 2.560 -0.429 0.900 -0.095 

CL(3) HCC 53.140 54.382 -1.242 2.008 -0.618 0.900 -0.108 

CL(3) MCC 53.140 53.333 -0.192 2.114 -0.091 0.900 -0.017 

CL(7) HCC 54.239 54.382 -0.143 2.008 -0.071 0.900 -0.012 

CL(7) MCC 54.239 53.333 0.906 2.114 0.429 0.900 0.079 

HCC MCC 54.382 53.333 1.049 1.395 0.752 0.863 0.091 
6-20 
Minute
s 
 

CL(3) CL(7) 55.605 47.256 8.349 1.712 4.876 0.001 1.080 

CL(3) HCC 55.605 49.259 6.346 1.343 4.726 0.001 0.826 

CL(3) MCC 55.605 50.232 5.373 1.414 3.800 0.001 0.698 

CL(7) HCC 47.256 49.259 -2.003 1.343 -1.492 0.445 -0.261 

CL(7) MCC 47.256 50.232 -2.976 1.414 -2.105 0.154 -0.387 

HCC MCC 49.259 50.232 -0.973 0.933 -1.043 0.700 -0.127 

g %Long Rally 0-5 
Minute
s 

CL(3) CL(7) 7.692 6.923 0.769 1.432 0.537 0.900 0.119 

CL(3) HCC 7.692 4.523 3.170 1.123 2.822 0.026 0.493 

CL(3) MCC 7.692 7.318 0.374 1.183 0.316 0.900 0.058 

CL(7) HCC 6.923 4.523 2.401 1.123 2.138 0.143 0.373 

CL(7) MCC 6.923 7.318 -0.395 1.183 -0.334 0.900 -0.061 

HCC MCC 4.523 7.318 -2.796 0.780 -3.583 0.002 -0.435 

6-20 
Minute
s 
 

CL(3) CL(7) 9.292 12.160 -2.868 1.111 -2.582 0.050 -0.572 

CL(3) HCC 9.292 10.365 -1.073 0.871 -1.232 0.594 -0.215 

CL(3) MCC 9.292 11.972 -2.680 0.917 -2.923 0.019 -0.537 

CL(7) HCC 12.160 10.365 1.795 0.871 2.061 0.168 0.360 

CL(7) MCC 12.160 11.972 0.187 0.917 0.204 0.900 0.038 
HCC MCC 10.365 11.972 -1.608 0.605 -2.657 0.041 -0.323 

h Relative 
improvement 
(%) in the 

 CL(3) CL(7) 20.341 54.109 -
33.76

8 

15.95
3 

-2.117 0.157 -0.469 Games 
Howell 
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average hit 
counts – 
Active 
Inference 

CL(3) HCC 20.341 82.147 -
61.80

6 

14.02
3 

-4.407 0.001 -0.770 

CL(3) MCC 20.341 50.755 -
30.41

4 

14.16
5 

-2.147 0.148 -0.394 

CL(7) HCC 54.109 82.147 -
28.03

8 

13.00
0 

-2.157 0.144 -0.377  

CL(7) MCC 54.109 50.755 3.353 13.15
4 

0.255 0.900 0.047  

HCC MCC 82.147 50.755 31.39
1 

10.73
1 

2.925 0.019 0.355  

 
 
 

Table S3. Multivariate statistical tests and all results for tests done.  
 

Figure Panel  Parameters Source DF1 DF2 MS F p-value np2 Method 
1 d Average Rally 

Length 
Group - all  4 729 0.185 1.021 0.395 0.006  

Mixed 
ANOVA 

Time Interval - 
all       

1 729 2.134 -21.944 1.000 -0.031 

Interaction - all  4 729 0.575 -5.909 1.000 -0.034 

e % Aces Group - all  4 729 0.044 1.014 0.399 0.006  
Mixed 

ANOVA 
Time Interval - 
all       

1 729 0.124 -5.589 1.000 -0.008 

Interaction - all  4 729 0.015 -0.685 1.000 -0.004 

f % Long Rally Group - all 4 729 0.019 1.749 0.137 0.010 Mixed 
ANOVA Time Interval - 

all       
1 729 0.063 -11.125 1.000 -0.015 

Interaction - all  4 729 0.039 -6.931 1.000 -0.040 

2 d Average Rally 
Length 

Group - all  4 729 0.170 0.926 0.448 0.005  
Mixed 

ANOVA 
Time Intervals 
- all       

1 729 1.488 -15.161 1.000 -0.021 

Interaction - all  4 729 0.704 -7.170 1.000 -0.041 

e % Aces Group - all  4 729 0.061 1.332 0.256 0.007  
Mixed 

ANOVA 
Time Intervals 
- all       

1 729 0.022 -0.957 1.000 -0.001 

Interaction - all  4 729 0.041 -1.745 1.000 -0.010 

f % Long Rally Group - all 4 729 0.011 0.886 0.472 0.005 Mixed 
ANOVA Time Intervals 

- all       
1 729 0.073 -11.249 1.000 -0.016 

Interaction - all  4 729 0.033 -5.038 1.000 -0.028 

3 d Average Rally 
Length 

Group - all  4 729 0.499 2.589 0.036 0.014  
Mixed 

ANOVA 
Time Intervals- 
all       

1 729 1.934 -18.645 1.000 -0.026 

Interaction - all  4 729 0.599 -5.774 1.000 -0.033 

e % Aces Group - all  4 729 0.111 2.331 0.055 0.013  
Mixed 

ANOVA 
Time Intervals- 
all       

1 729 0.111 -4.583 1.000 -0.006 

Interaction - all  4 729 0.021 -0.871 1.000 -0.005 

f % Long Rally Group - all 4 729 0.018 1.523 0.194 0.008 Mixed 
ANOVA Time Intervals 

- all       
1 729 0.081 -12.847 1.000 -0.018 

Interaction - all  4 729 0.032 -5.057 1.000 -0.029 

B3 d Group - all 5 478 1.645 8.293 0.0 0.080 
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Average Rally 
Length 

Time Intervals 
- all       

1 478 2.153 -18.414 1.0 -0.040 Mixed 
ANOVA 

Interaction - all  5 478 0.443 -3.787 1.0 -0.041 

e % Aces Group - all 5 478 0.259 5.194 0.0 0.052 Mixed 
ANOVA Time Intervals 

- all       
1 478 0.059 -2.212 1.0 -0.005 

Interaction - all  5 478 0.027 -1.008 1.0 -0.011 

f % Long Rally Group - all 5 478 0.049 4.611 0.0 0.046 Mixed 
ANOVA Time Intervals 

- all       
1 478 0.113 -18.808 1.0 -0.041 

Interaction - all  5 478 0.019 -3.197 1.0 -0.035 

B4 d Average Rally 
Length 

Group - all 5 478 0.765 4.206 0.001 0.042 Mixed 
ANOVA Time Intervals 

- all       
1 478 1.873 -17.980 1.000 -0.039 

Interaction - all  5 478 0.502 -4.819 1.000 -0.053 

e % Aces Group - all 5 478 0.060 1.410 0.219 0.015 Mixed 
ANOVA Time Intervals 

- all       
1 478 0.050 -2.277 1.000 -0.005 

Interaction - all  5 478 0.029 -1.306 1.000 -0.014 

f % Long Rally Group - all 5 478 0.032 2.926 0.013 0.030 Mixed 
ANOVA Time Intervals 

- all       
1 478 0.081 -13.550 1.000 -0.029 

Interaction - all  5 478 0.026 -4.281 1.000 -0.047 

B5 d Average Rally 
Length 

Group - all 5 478 2.177 10.721 0.0 0.101 Mixed 
ANOVA Time Intervals 

- all       
1 478 1.503 -12.236 1.0 -0.026 

Interaction - all  5 478 0.645 -5.254 1.0 -0.058 

e % Aces Group - all 5 478 0.421 7.738 0.0 0.075 Mixed 
ANOVA Time Intervals 

- all       
1 478 0.029 -0.970 1.0 -0.002 

Interaction - all  5 478 0.046 -1.526 1.0 -0.016 

f % Long Rally Group - all 5 478 0.046 4.651 0.0 0.046 Mixed 
ANOVA Time Intervals 

- all       
1 478 0.095 -16.734 1.0 -0.036 

Interaction - all  5 478 0.025 -4.406 1.0 -0.048 

B8 d Average Rally 
Length 
 
 
 
 

Group - all 4 729 0.260 1.372 0.242 0.007 Mixed 
ANOVA Time Intervals 

- all       
1 729 2.355 -23.160 1.000 -0.033 

Interaction - all  4 729 0.525 -5.161 1.000 -0.029 

e % Aces Group - all 4 729 0.066 1.445 0.217 0.008 Mixed 
ANOVA Time Intervals 

- all       
1 729 0.141 -5.986 1.000 -0.008 

Interaction - all  4 729 0.021 -0.897 1.000 -0.005 

f % Long Rally Group - all 4 729 0.017 1.370 0.243 0.007 Mixed 
ANOVA Time Intervals 

- all       
1 729 0.113 -17.552 1.000 -0.025 

Interaction - all  4 729 0.024 -3.684 1.000 -0.021 

B9 d Average Rally 
Length 

Group - all 4 729 0.136 0.756 0.554 0.004 Mixed 
ANOVA Time Intervals 

- all       
1 729 1.690 -17.577 1.000 -0.025 

Interaction - all  4 729 0.663 -6.889 1.000 -0.039 
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e % Aces Group - all 4 729 0.032 0.712 0.584 0.004 Mixed 
ANOVA Time Intervals 

- all       
1 729 0.054 -2.376 1.000 -0.003 

Interaction - all  4 729 0.042 -1.838 1.000 -0.010 

f % Long Rally Group - all 4 729 0.009 0.763 0.55 0.004 Mixed 
ANOVA Time Intervals 

- all       
1 729 0.073 -11.682 1.00 -0.016 

Interaction - all  4 729 0.032 -5.152 1.00 -0.029 

5 a Average Rally 
Length 

Group - all 3 360 0.160 0.792 0.499 0.007 Mixed 
ANOVA Time Intervals 

- all       
1 360 4.486 -38.506 1.000 -0.120 

Interaction - all  3 360 0.286 -2.454 1.000 -0.021 

b % Aces Group - all 3 360 0.033 0.844 0.471 0.007 Mixed 
ANOVA Time Intervals 

- all       
1 360 0.162 -7.936 1.000 -0.023 

Interaction - all  3 360 0.031 -1.503 1.000 -0.013 

c % Long Rally Group - all 3 360 0.012 1.004 0.391 0.008 Mixed 
ANOVA Time Intervals 

- all       
1 360 0.234 -36.162 1.000 -0.112 

Interaction - all  3 360 0.003 -0.517 1.000 -0.004 

 

Table S4. Multivariate statistical tests and all results for tests done. 
 

Figure Panel  Parameters Source DF MS F p-
value 

np2 Method 

4 a Average Paddle 
Movement 

Group - 
all  4 1.064e+10 21.837 0.0 0.155 ANOVA 

b Relative 
improvement (%) in the 
average hit counts 

Group - 
all  4 104528.369 17.807 0.0 0.089 

 ANOVA 

c Average Paddle 
Movement 
 

Group - 
all 4 1.801e+10 49.523 0.0 0.293 

 ANOVA 

d Relative 
improvement (%) in the 
average hit counts 
 

Group - 
all  4 116698.296 16.243 0.0 0.082 

ANOVA 

e Average Paddle 
Movement 
 

Group - 
all  4 1.009e+10 26.881 0.0 0.184 

 ANOVA 

f Relative 
improvement (%) in the 
average hit counts 
 

Group - 
all 4 79671.720 9.889 0.0 0.051 

 ANOVA 

5 d Relative 
improvement (%) in the 
average hit counts – 
Active Inference 

Group - 
all 3 52072.238 6.733 0.0 0.053 

ANOVA 

B6 a Relative 
improvement (%) in the 
average hit counts - 
DQN 

Group - 
all  

5 77257.903 10.241 0.0 0.097 

ANOVA 

b Relative 
improvement (%) in the 
average hit counts – 
A2C 

Group - 
all  5 73239.513 11.211 0.0 0.105 

 ANOVA 
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c Relative 
improvement (%) in the 
average hit counts - 
PPO 

Group - 
all  5 83698.926 9.517 0.0 0.091 

ANOVA 

B10 a Relative 
improvement (%) in the 
average hit counts - 
Ball Position Input 

Group - 
all  

4 81200.989 10.941 0.0 0.057 

ANOVA 

b Relative 
improvement (%) in the 
average hit counts - 
Paddle&Ball Position 
Input 

Group - 
all  

4 125476.158 20.915 0.0 0.103 

ANOVA 
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